○ FCC

LCWS2024 AND KEK REPORT

Frank Zimmermann

FCC-ee Optics Design Meeting #189 & 58th FCCIS WP2.2 meeting, 25 July 2024

LCWS'24, The University of Tokyo, 8-11 July 2024

○ FCC

Opening by Shoji Asai

FCC

Promotion scheme of ILC / relation of Stakeholder

Programme of the first day

	Registration	
	Foyer, Ito International Research Center	08:30 - 09:00
9:00	Opening remarks	Shoji Asai 🖉
	Ito Hall, Ito International Research Center	09:00 - 09:10
	Physics case for Higgs and Electroweak precision	Jorge De Blas Mateo 🖉
	Ito Hall, Ito International Research Center	09:10 - 09:30
	ILC status	Tatsuya Nakada 🖉
	Ito Hall, Ito International Research Center	09:30 - 09:42
	CLIC status	Steinar Stapnes 🖉
	Ito Hall, Ito International Research Center	09:42 - 09:54
):00	Status of the C3 R&D	Caterina Vernieri 🖉
	Ito Hall, Ito International Research Center	09:54 - 10:06
	Physics case for e+e- at 500 GeV and above	Georg Ralf Weiglein 🖉
	Ito Hall, Ito International Research Center	10:06 - 10:26
	coffee	
	Foyer, Ito International Research Center	10:30 - 11:00
:00	HALHF status	Brian Foster 🧷
	Ito Hall, Ito International Research Center	11:00 - 11:12
	XCC status	Tim Barklow 🖉
	Ito Hall, Ito International Research Center	11:12 - 11:24
	Energy recovery at a Linear Collider	Vladimir Litvinenko 🖉
	Ito Hall, Ito International Research Center	11:24 - 11:36
	CEPC status	Jie Gao 🖉
	Ito Hall, Ito International Research Center	11:36 - 11:48
	FCCee status	Frank Zimmermann 🖉
	Ito Hall, Ito International Research Center	11:48 - 12:00
00	Muon collider status (remote talk)	Daniel Schulte 🥖
	Ito Hall, Ito International Research Center	12:00 - 12:12
	Higgs Factory detector R&D	Srini Rajagopalan 🖉
	Ito Hall, Ito International Research Center	12.12 - 12.32

14:00	ITN: accelerator developments	Shinichiro Michizono 0	ECFA Higgs-EW-top factory study Aidan Robson			
	Fukutake Hall	14:00 - 14:15	Ito Hall, Ito International Research Center 14:00 - 14:15			
	CLIC: accelerator developments Philip Burrows 🧭		Beyond collider experiments at a Linear Collider 🖉			
	Fukutake Hall	14:15 - 14:30	Yasuhito Sakaki			
	C3: accelerator developments	Ankur Dhai 🖉	Challenges for MC generators Jürgen Reuter			
	Fukutake Hall	14:30 - 14:45	Ito Hall, Ito International Research Center 14:30 - 14:45			
	CEPC: accelerator developments	yuhui li 💋	Opportunities and Experimental Challenges at the Higg			
	Fukutake Hall	14:45 - 15:00	Junping Tian			
15:00	FCCee: accelerator developments	Frank Zimmermann 🤞	Highlights from LHC detector upgrades			
	Fukutake Hall	15:00 - 15:15	Gustaaf Brooijmans et al.			
	Energy Upgrades of a linear Higgs	factory Emilio Nanni 💋	Highlights from detectors for EIC Taku Gunji 🧔			
	Fukutake Hall	15:15 - 15:30	Ito Hall, Ito International Research Center 15:15 - 15:30			
	coffee					
	Foyer, Ito International Research Cer	ter	15:30 - 16:00			
16:00	Introduction and Kick-off Presenta	tions	Brian Foster et al.			
	Ito Hall, Ito International Research Ce	enter	16:00 - 16:45			
	Plenary discussion		Aidan Robson et al. 🏼 🤇			
17:00						
	Ito Hall. Ito International Research Ce	enter	16:45 - 17:30			
	Posters: Posters and Reception					

Physics goals of full Higgs factory program (M. Peskin)

350 GeV: top quark threshold

a short run (200 fb-1) gives m(t) to < 50 MeV

550 - 600 GeV: above the ttH, ZHH thresholds

Higgs couplings to 1% in $WW \rightarrow H$ 2nd!

top quark EW form factors (SMEFT parameters) to parts per mil

measurement of top Yukawa in $e^+e^- \rightarrow t\bar{t}H$ to 3%

measurement of triple H coupling in $e^+e^- \rightarrow ZHH$ to 20%

precision study of $e^+e^- \rightarrow W^+W^-$, $e^+e^- \rightarrow f\bar{f}$ for global SMEFT fits, 10's -TeV BSM sensitivity, CP violation probes 2nd! Physics goals of full Higgs factory program (M. Peskin)

800 - 1000 GeV: final Higgs Factory stage

Higgs couplings to <1% in $WW \rightarrow H$ 3rd!

top quark EW form factors (SMEFT parameters) to parts per mil 2nd!, resolution of degeneracies in SMEFT fit

measurement of top Yukawa in $e^+e^- \rightarrow t\bar{t}H$ to 1% 2nd!

measurement of top Yukawa in $WW \rightarrow t\bar{t}$ to few % 3rd!

measurement of triple H coupling in $e^+e^- \rightarrow \nu \bar{\nu} H H$ to 10% 2nd!

precision study of $e^+e^- \rightarrow W^+W^-$, $e^+e^- \rightarrow f\bar{f}$ for global SMEFT fits, 100 -TeV BSM sensitivity, CP violation probes 3rd!

○ FCC

ILC at CERN vs FCC-ee (R. Pöschl)

- Carbon footprint of all LC projects << Carbon footprint of circular machines
- Until ~500 GeV power consumption remains in ball park of current CERN power consumption
- Estimated operation cost for ILC ~390 MILC (plus 700-1000 FTE)
 - Compare with 1.3 BCHF for FCCee as estimated by German BMBF

Official LCWS2024 workshop photo

SuperKEKB run 2024ab summary meeting (Part 1)

1 What is "SBL(Sudden Beam Loss)" ?

前兆現象なしに 1 ターン (10μs) 以内に突然発 生するビームロス = Sudden Beam Loss (SBL)

- LS1以前からSBLは観測されており、原因は 不明。
- ・
 蓄積ビームのかなりの部分が、アボートトリ ガーが発報されて、ダンプされる前に失わ れる。

SBLによって生じる問題

- コリメータやその他の加速器コンポーネントの損傷
- ・ QCS クエンチ
- ・Belle-II 検出器へのB.G.&損傷
- 電流値を上げた時に起こることが多いため、
 大電流を積むことが難しい。

Beam signal measured by

Bunch Oscillation Recorder(BOR) & Bunch Current Monitor(BCM)

H. Ikeda

SuperKEKB: abort statistics

Abort statistics

2024-01-30 00:00:00 ~ 2024-07-01 09:00:59

ring	SBL	BeamLoss	Injection	RF	Mag	VA	EQ	Others	TOTAL
TOTAL	163	588	1801(392)	107	17	19	37	65	2824
Both(LER)	129	86	157 (93*)	2	7	-	-	16	397
Both(HER)	19	143	1135 (247**)	2	-	-	-	3	1302
Both	-	-	-	-	8	-	7	1	16
LER	15	234	199 (12*)	63	1	4	5	24	545
HER	-	125	310 (40**)	40	1	15	25	21	537

*I_LER>10mA **I_HER>10mA H. Ikeda

LER SBL statistics

2024/3/8

0:00

2024/3/15

0:00

2024/3/22

0:00

2024/3/29

0:00

2024/4/5

0:00

2024/4/12

0:00

2024/4/19

0:00

2024/4/26

0:00

Bunch Current[mA]

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

2024/6/28

0:00

LER SBL 1600 β*=3mm Beam Current [mA] 1400 Single beam 1200 1000 800 600 400 200 0

2024/5/3

0:00

2024/5/10 2024/5/17

0:00

0:00

2024/5/24

0:00

2024/5/31

0:00

2024/6/7

0:00

2024/6/14 2024/6/21

0:00

0:00

SuperKEKB: sudden beam loss HER SBL statistics

H. Ikeda

Bunch Current [mA]

HER SBL

Beam Current OBunch Current QCS quench

Beam current dependency

March.1st - June. 17 at 23:00

* Exclude SBLs and operation time on May17 and May30 (knocker study)

- Frequency (#SBL/hour) depends on the LER beam current
- The frequency (#SBL/hour) in June is reduced
 - Thanks to knocking beam pipes at D10

H. Ikeda

4. Knocker study (5/17, 5/30, 6/18, 6/25)

H. Ikeda

- ・再度ノッカー試験をして、ダストイベントを強制的に起こし、どのような現象がみられるかを 観測することにした。
- ・ノッカー設置場所(5/17)
 - ・LS1中に真空作業があり、ダストが再捕捉される可能性が高い場所。Belle II および QCS の安全のため、ダスト発生点とIP間にコリメータがある場所。
 - D06 アーク部偏向磁石内のgroove付アルミニウムビームパイプ
 - ・ 圧力バーストが頻繁にあり、SBLの原因発生を疑われる場所。ダスト発生点とIP間にコリ メータがある場所。
 - D10 日光ウィグラー部の電位雲除去用電極付きビームパイプ:銅製ビームパイプ にアルミナとタングステンを蒸着して電極を形成(電極はビームパイプ上部)。

(T. Ishibashi, S. Terui et.al)

Beam pipe with clearing electrode in D10 Nikko Wiggler section

SuperKEKB: sudden beam loss - summary

5. Summary

- 真空バースト、ビームサイズ、Aging効果等から、SBLの原因としてダストが疑われたため、ノッカー試験を行った。
- その結果、メカニズムはまだはっきりしていないが、ダストとSBLの間には何らかの因果関係があるように見える。
- ・観測される事象(真空バースト/SBL/その他のAbort)はダストの種類、落下場所、 ビーム電流によって異なるように見える。
- 何らかのダストトラップ機構のあるチェンバー(groove付・電子雲除去用電極付)
 部を叩いた時のみアボートは起きる。
- ・チェンバーをたたき続けると、その後Abortは減少する。
- ・電子雲除去用電極が原因のSBLが多いのは確かなので、シャットダウン中に対応を取る。→真空G.報告(by石橋氏)
- ・その他のデータも解析中。

SuperKEKB: specific luminosity over the years

○ FCC

SuperKEKB: multibunch effect in specific luminosity

SuperKEKB: single beam size vs current

2024 June $27^{th} \beta y^* = 0.9 mm$

The single beam blowup must be suppressed for a higher luminosity.

Y. Funakoshi

SuperKEKB LER: comparison before and after LS1

2024 June $27^{th} \beta y^* = 0.9 mm$ LER 120 (**md**)100 Emittance 80 60 Vertical 40 0 0.2 0.4 0.6 0.8 Bunch Current (mA)

FIG. 10. The vertical beam emittance versus bunch current with $\beta_y^* = 1 \text{ mm}$, before (green diamonds) and after (black circles) the event of collimator jaw damage with BxB feedback on. The data of purple triangles show the measurement with BxB feedback off.

Y. Funakoshi

SuperKEKB: beam-beam issues - summary

Specific luminosity

- Specific luminosity with $\beta y^*=0.9$ mm lower than that with $\beta y^*=1$ mm end of March.
- Specific luminosity with $\beta y^*=1$ mm at the end of March similar to that on April 5th 2022. Beam blowup
- Single beam (single bunch)
 - Serious blowup as function of bunch current in LER and -1 mode peak is high.
 - HER single bunch blowup is also seen.
- Beam-beam blowup
 - Specific luminosity with 2349 bunches is lower than that with 393 bunches by ~10%.
 - Optics distortion at high beam currents is responsible for this?

Beam injection

• Beam-beam effects affect beam injection efficiency largely in LER. Change of tunes improves the effect to some extent. Similar measurement should be done in HER.

Y. Funakoshi