Report on ICHEP2024

Accelerator Design Meeting - July 25th, 2024

K. André

Agenda - I

- Accelerator sessions: 4 on Thursday and 2 on Friday
 - Accelerators: Physics, Performance, and R&D for future facilities
- Present and approved accelerator facilities
- Panel discussion on Future colliders
- Future facilities and advances in accelerator technologies
- FCC integrated program and R&D in accelerator technologies

Agenda - II

	Status of the CEPC Project	Haijun Yang	Ø
	Club D	08:30 - 08:4	8
	ILC and CLIC Project Status and Plans	Jenny List	0
09:00	Club D	08:48 - 09:0	6
	Highlight from SuperKEKB Beam Commissioning after Upgrading during Long Shutdown	kyo shibata	Ø
	Club D	09:06 - 09:2	4
	FCC-ee Collider Design Overview	Kevin Andre	0
	Club D	09:24 - 09:4	2
	The R&D Roadmap towards ERL-based particle physics colliders	Jorgen D'Hondt	Ø
	Club D	09:42 - 10:0	0
10:00	PERLE and bERLinPro, two key accelerator projects as pathfinders for future ERL based HEP colliders	Walid KAABI	0
	Club D	10:00 - 10:1	.5
	Coffee break		
	Foyer Floor 2	10:15 - 10:4	5
	Physics Program for Super Tau-Charm Facility	Haiping Peng	Ø
	Club D	10:45 - 11:0	0
11:00	Accelerator design and R&D efforts for Super Tau-Charm Facility	rof. Jingyu Tang	Ø
	Club D	11:00 - 11:1	.5
	Study status of Beam Backgrounds and MDI Design at the CEPC	Haoyu Shi	Ø
	Club D	11:15 - 11:3	0
	Status of HALHF - a concept for a hybrid asymmetric linear Higgs factory	Brian Foster	Ø
	Club D	11:30 - 11:4	5
	Progress in the center-of-mass energy calibration and monochromatization at FCC-ee	urelien Martens	Ø
	Club D	11:45 - 12:0	0
12:00	A crystal-based positron source for lepton colliders	Nicola Cahale	Ø
	Club D	12:00 - 12:1	.5
	R&D for positron sources at high-energy lepton colliders gud	id moortgat-pick	0
	Club D	12:15 - 12:3	0

	Status and prospects of the HL-LHC project	I	Hector Garcia Gavela 🥝			
	Club D		14:30 - 14:48			
	HL-LHC Crab Cavities & Future Prospects		Rama Calaga 🥝			
15:00	Club D		14:48 - 15:06			
	The electron cloud challenge for the HL-LHC		Lotta Mether 🥝			
	Club D		15:06 - 15:24			
	Present and future beam collimation: challenges and solu Dr Stefano Redaelli	Exhibition free guided tour (I)				
	New baseline layout of the CERN Future Circular hadron Gustavo Perez Segurana	Foyer - Winter Garden	15:30 - 16:00			
16:00	The High-Field Magnet Programme: Magnet R&D for FCC- Ø Bernhard Auchmann	-				
	Coffee break					
	Foyer Floor 2		16:15 - 16:45			
17:00	Significant upgrades of magnetic horn system for J-PARC neutrino beamline towards 1.3 MW beam power <i>Tetsuro Sekiguchi</i>					
	High intensity upgrades for fixed-target experiments at CERN		Johannes Bernhard 🥝			
	Club D		17:03 - 17:21			
	Update on TWOCRYST: the feasibility of double-crystal fixed-	target experiments at the LHC	Pascal Hermes 🥝			
	Club D		17:21 - 17:36			
	EIC Electron Injector Systems Overview		Vahid Ranjbar 🥝			
	Club D		17:36 - 17:54			
18:00	The LHeC and FCC-eh experimental program		Jorgen D'Hondt 🥝			
	Club D		17:54 - 18:12			

Agenda - III

	Atomic Layer deposited thin coatings for Secondary Electron Emission yield optimization	Mathieu Lafarie	0
	Club D	08:30 - 08:	45
	Compact online scintillation spectrometer and dosemeter for LWFA sources	Benoit Lefebvre	Ø
	Club D	08:45 - 09:	00
09:00	Compact Electron Linacs for Research, Medical, and Industrial Applications	aurence Matthew Wroe	0
	Club D	09:00 - 09:	15
	The ICMuS2 Project: Production of a Multi-GeV Muon Beam using Laser Wakefield Acceleration	Dr Anna Cimmino	0
	Club D	09:15 - 09:	30
	Optimizing Mu2e Experiment: Beam Shadowing with Channeling in Bent Crystals for Enhanced B Marco Romagnoni	Extraction Efficiency	Ø
	The new High Intensity and Brightness Beams at PSI: Status and prospects	Angela Papa	Ø
	Club D	09:45 - 10:	00
10:00	nuSTORM: neutrino physics on the path to the muon collider	M. Paul Bogdan Jurj	0
	Club D	10:00 - 10:	15
	Coffee break		
	Foyer Floor 2	10:15 - 10:	45
	Machine-detector interface design for a 10-TeV muon collider	Daniele Calzolari	0
11:00	Club D	10:45 - 11:	03
	Muon Collider Progress	Dohatella Lucchesi	0
	Club D	11:03 - 11:	21
	Final Cooling with Thick Wedges for a Muon Collider	Dahiel Fu	0
	Club D	11:21 - 11:	39
	Transverse Collective Effects studies for a Muon Collider	David Amorim	0
	Club D	11:39 - 11:	57
12:00	Physics Potential, Accelerator Options, and Experimental Challenges of a TeV-Scale Muon-Ion Co	ollider Darin Acosta	0
	Club D	11:57 - 12:	15

15:00

16:00

Present and approved accelerator facilities	Sergei Nagaitsev 🥝
Congress Hall	12:15 - 12:40

Panel discussion on Future Colliders	Florencia Canelli et al.
Congress Hall	14:45 - 16:00
Future facilities and advances in accelerator technologies	Rende Steerenberg 🥝
Congress Hall	16:00 - 16:25

Kyo Shibata (KEK Accel. Lab. & SOKENDAI)

On behalf of the SuperKEKB and Belle II Commissioning Group

Inter-University Research Institute Corporation High Energy Accelerator Research Organization (KEK) 大学共同利用機関法人 高エネルギー加速器研究機構 (KEK)

Sudden Beam Loss (SBL) #3

upside down

Countermeasure against SBL during summer shutdown

- Turning beam pipes with electron clearing electrode upside down
 - 15/50 beam pipes will be turned upside down. (56 m/185 m = 30 %)
 - Oho straight section : 13/16 beam pipes (D04 wiggler section) and 2/4 beam pipes (D05 NLC section) will be turned upside down.
 - It takes over 1 month to turn 13 beam pipes upside down at D04 wiggler section.
 - Nikko straight section : 30 beam pipes at Nikko wiggler section will not be turned upside down.
- Visual check and dust cleaning of beam pipes which will not be turned upside down.
- Knocking as many beam pipes (with electron clearing electron or groove structure) as possible. •

Beyond 10³⁵ strategy

ICHEP 2024@PRAGUE

- 2024ab run was conducted as scheduled from January 29th to July 1st.
 - First run after Long Shutdown 1
 - NLC system construction, upgrade of HER injection point, etc.
 - Peal luminosity : 4.47×10^{34} cm⁻²s⁻¹
 - Integrated luminosity : 103 fb⁻¹
 - βy^* squeezing : mostly 1.0 mm, finally 0.9 mm
- There are many findings from 2024ab run
 - First demonstration of the effectiveness of the NLC system
 - Improvement of HER injection efficiency at last (30% -> 80%)
 - Still struggle with SBL, but on track to solve it for LER
 - Turning beam pipes with electron clearing electrodes upside down during summer shutdown
 - Also struggle with difficulty to increase beam currents and poor machine stability
- 2024c run will start on October 9th.
 - Operation period : 2 months
 - Extending operation time is difficult due to rising electricity prices.
 - Target luminosity : 1×10³⁵ cm⁻²s⁻¹
 - Need to overcome many challenges.

Funded by the European Union NextGenerationEU

A crystal-based positron source for lepton colliders

Prague ICHEP 2024

Nicola Canale

on behalf of F. Alharthi, L. Bandiera, I. Chaikovska, R. Chehab, S. Carsi, D. De Salvador, V. Guidi, V. Haurylavets, G. Lezzani, L. Malagutti, S. Mangiacavalli, P. Monti Guarnieri, A. Mazzolari, V. Mytrochenko, R. Negrello, G. Paternò, M. Prest, M. Romagnoni, A. Selmi, F. Sgarbossa, M. Soldani, A. Sytov, V. Tikhomirov, E. Vallazza

INFN Ferrara ncanale@fe.infn.it

Summary	e ⁻ e ⁻	e de y e	e ⁺ γ e ⁻			
for 13.5 nC e ⁺ bunch charge	Conventional source Iryna Chaikovska, FCC Week2024 [2]	Hybrid source	Single crystal			
e ⁺ beam energy	6 GeV	6 GeV	6 GeV			
e⁺ yield @DR	7 N _{e+} /N _{e-}	7.36 N _{e+} /N _{e-} (+5%)	7.87 N _{e+} /N _{e-} (+12%)			
Target thickness	17.5 mm (5 X ₀)	11.6 + 1.4 mm (~3.7 X ₀)	13 mm (~3.7 X _o)			
Target deposited Power	1.3 kW	0.88 kW (-32%)	0.89 kW (-31%)			
Primary e ⁻ bunch charge	1.93 nC	1.83 nC (- 5%)	1.72 nC (-11%)			
Target PEDD	6.5 J/g/pulse	6.41 J/g/pulse	6.48 J/g/pulse			
The design of a crystal-based positron source for the FCC-ee is well-advanced.						
NEXT STEPS: integration studies and beam tests with potential proof-of-principle at P ³ experiment @ PSI						

Present and approved accelerator facilities

Sergei Nagaitsev EIC Technical Director Brookhaven National Laboratory

23 July 2024

Colliders – Important considerations

- Energy
- Luminosity
 - Target density in collider >10 orders of magnitude lower than in fixed target
- Interaction Region design
 - Detector space
 - Experimental background
 - Forward particles
 - •

. . .

National Laboratory

Also

•

Cost

. . .

- Reliability
- Flexibility (energy, species for ion colliders)
- Energy efficiency / operating cost

	Colliders	Species	E_{cm} , GeV	C, m	$\mathcal{L}, 10^{32}$	Years	Host lab, country
	AdA	e^+e^-	0.5	4.1	10^{-7}	1964	Frascati/Orsay
	VEP-1	e^-e^-	0.32	2.7	5×10^{-5}	1964-68	Novosibirsk, USSR
	CBX	e^-e^-	1.0	11.8	2×10^{-4}	1965-68	Stanford, USA
	VEPP-2	e^+e^-	1.34	11.5	4×10^{-4}	1966-70	Novosibirsk, USSR
	ACO	e^+e^-	1.08	22	0.001	1967-72	Orsay, France
rdars of	ADONE	e^+e^-	3.0	105	0.006	1969-93	Frascati, Italy
	CEA	e^+e^-	6.0	226	$0.8 imes 10^{-4}$	1971-73	Cambridge, USA
arget	ISR	pp	62.8	943	1.4	1971-80	CERN
0	SPEAR	e^+e^-	8.4	234	0.12	1972-90	SLAC, USA
	DORIS	e^+e^-	11.2	289	0.33	1973-93	DESY, Germany
	VEPP-2M	e^+e^-	1.4	18	0.05	1974-2000	Novosibirsk, USSR
	VEPP-3	e^+e^-	3.1	74	2×10^{-5}	1974-75	Novosibirsk, USSR
	DCI	e^+e^-	3.6	94.6	0.02	1977-84	Orsay, France
	PETRA	e^+e^-	46.8	2304	0.24	1978-86	DESY, Germany
	CESR	e^+e^-	12	768	13	1979-2008	Cornell, USA
	PEP	e^+e^-	30	2200	0.6	1980-90	SLAC, USA
	$Sp\bar{p}S$	$p\bar{p}$	910	6911	0.06	1981-90	CERN
	TRISTAN	e^+e^-	64	3018	0.4	1987-95	KEK, Japan
	Tevatron	$p\bar{p}$	1960	6283	4.3	1987-2011	Fermilab, USA
	SLC	e^+e^-	100	2920	0.025	1989-98	SLAC, USA
	LEP	e^+e^-	209.2	26659	1	1989-2000	CERN
	HERA	ep	30 + 920	6336	0.75	1992-2007	DESY, Germany
	PEP-II	e^+e^-	3.1 + 9	2200	120	1999-2008	SLAC, USA
_	KEKB	e^+e^-	3.5 + 8.0	3016	210	1999-2010	KEK, Japan
ſ	VEPP-4M	e^+e^-	12	366	0.22	1979-	Novosibirsk, Russia

 e^+e^-

 e^+e^-

p, i

p, i

 e^+e^-

 e^+e^-

p, i

ep

BEPC-I/II

VEPP2000

S-KEKB

DAΦNE

RHIC

LHC

NICA

EIC

Approved

Present (7

(adapted from [Shiltsev and Zimmermann, 2021]).

4.6

1.02

510

13600

2.0

7 + 4

13

10 + 275

238

98

3834

26659

24

3016

503

3834

10

4.5

2.5

210

0.4

6000*

1*

 105^{*}

1989-

1997 -

2000-

2009-

2010 -

2018 -

2024(tbd)

2032(tbd)

IHEP, China

BNL, USA

KEK, Japan

JINR, Russia

BNL, USA

CERN

Frascati, Italy

Novosibirsk, Russia

Colliders e⁺e⁻ (factories): VEPP-2000, VEPP-4M, BEPC-II, DAΦNE, SuperKEKB

[Reported numbers, not design]

	DA Φ NE	VEPP-2000	BEPC-II	VEPP-4M	SuperKEKB
Start of operation [year]	1999	2010	2008	1994	2018
Species	e+e-	e+e-	e+e-	e+e-	e+e-
Circumference [m]	97	24	238	366	3016
Beam energy [GeV]	0.51	1	1.89 (2.474 max)	6	4 / 7
CoM energy [GeV]	1.02	2	3.78 (5.56 max)	12	10.58
Average beam current [mA]	800 / 1250	160	851	80	1400 / 1000
Peak luminosity [10 ³⁰ cm ⁻² s ⁻¹]	453	50	1000	20	3810
Focus	Φ meson	u,d,s interactions	tau-charm	Y(1S) meson	B meson

[PDG, Tables 32.1, 32.3;

Q. Qin, "Overview of the low energy colliders", proceedings eeFACT2016, Daresbury (2016)]

Colliders e+e-

Ongoing discussion concerning DAFNE's future:

In the next future DAFNE might be used for short periods, 4-5 months per year.

DAFNE Synchrotron Light Facility could be also operated.

DAFNE LINAC will continue to power two **Beam Test Facility lines.**

This plan requires a minimal refurbishment of the accelerator complex that can also be implemented progressively

Maintaining DAFNE infrastructure operative could be also very much synergic with Future CERN developments in the lepton colliders field.

Status and upgrade of BEPC-II discussion:

Increase luminosity by factor 3 and energy up to 2.8 GeV.

Requires: double beam power, optics upgrade and new high field magnets. Commissioning planned for January 2025.

SuperKEKB:

During Long Shutdown 1: Improvements of the Belle II detector and the SuperKEKB accelerator.

Countermeasures to sudden beam loss should be implemented during summer maintenance period.

Target luminosity is 1×10^{35} cm⁻²s⁻¹ for this year.

Donomotors	Design	Achieved			
rarameters	Design	BER	BPR		
Beam energy (GeV)	1.0-2.1, 1.89	0.92-2.47, 1.89	0.92-2.47, 1.89		
Beam current (mA) 910		950	950		
Bunch number	93	118	118		
Beam-beam parameter	0.04	0.04	41		
$\boldsymbol{\beta}_{x}^{*}/\boldsymbol{\beta}_{y}^{*}(\mathbf{m})$	1.0/0.015	1.0/0.0135	1.0/0.0135		
Lum. (× 10 ³³ cm ⁻² s ⁻¹)	1.0	1.1			

BEPC parameters

Colliders hh and eh: RHIC, LHC, EIC, NICA

Nuclotron-based Ion Collider fAcility

	RHIC pp (actual)	LHC pp (actual)	RHIC AA (actual)	LHC AA (actual)	EIC ep, eA (design)	NICA pp, dd, AA
Start of operation [year]	2001	2009	2000	2010	2032 (planned)	2025 (planned)
Species	p↑+p↑ (polarized p)	p+p	p↑+AI, p↑+Au, d+Au, h+Au, O+O, Cu+Cu, Cu+Au, Zr+Zr, Ru+Ru, Au+Au, U+U	Pb+Pb, p+Pb, Xe+Xe	e↑+p↑ to e↑+U (polarized e,p, He-3)	p↑ d↑ A
Circumference [km]	3.8	26.7	3.8	26.7	3.8	0.5
Beam energy [GeV]	255	6500	100 A	2560 A	5-18 / 40-275	1 – 4.5
CoM energy [GeV]	510	13000	200 A	5120 A	28-140 (e↑+p↑)	4 – 11
Average beam current [mA]	257	510	224 (Au+Au)	24 (Pb+Pb)	2500 / 1000	
Peak luminosity [10 ³⁰ cm ⁻² s ⁻¹]	245	2100	0.015 (Au+Au)	0.006 (Pb+Pb)	10000 (e↑+p↑)	
Spin polarization	55-60%	0	0	0	70% e,p,h	15

Luminosity evolution of hadron-hadron and lepton-hadron colliders

16

Summary – present accelerators and approved facilities

- Present colliders: 5x e⁺e⁻ and 2x hh
 - Low-energy colliders are technology test beds (beam-beam compensation, crab crossing, beam cooling, collimation, ...)
 - SuperKEKB (very high L) prototype for future e⁺e⁻ colliders, EIC
 - hh colliders increasing flexibility (energy, species)
- Colliders under construction:
 - BNL Electron-Ion Collider: ~100x HERA luminosity, polarized e,p,He-3 and heavy ions
 - NICA
- Present high-intensity machines
 - >1 MW beam power available, v beams drive increases
 - Synergies with other applications: spallation neutron sources, nuclear physics, Accelerator Driven Systems (ADS)
- Present high-intensity projects:
 - FNAL PIP-II goal: 1.2 MW
 - J-PARC MR goal: 1.3 MW

BNL EIC project – working towards baseline collisions 2032 (planned)

ICHEP 2024 PRAGUE

ichep2024.org

42nd International Conference on High Energy Physics July 17-24 2024 Prague Czech Republic

Future facilities and advances in accelerator technologies

Rende Steerenberg – CERN

With thanks to Mike Lamont and all others from who I 'borrowed' material

23 July 2024

Possible future main facilities

Foreseen to start operations within the time frame until 2045:

-

- EiC (approved)
- FCC-ee
- ILC/CLIC
- CEPC
- CCC

Beyond 2045:

- FCC-hh
- Muon Collider
- SppC

Other ideas were also presented and discussed at ICHEP-2024:

- Energy Recovery Linac (ERL) based facilities (LHeC, FCC-eh, etc.)
 - PERLE and bERLinPro, pathfinders for future ERL based colliders
- Wakefield-acceleration-based muon facility
- Hybrid Asymmetric Linear Higgs Factory (HALHF) partially based on Wakefield acceleration
- Tau-Charm facility in China
- Compact Electron Linacs for Research, Medical, and Industrial Applications

Summary of Rende's slides

- Mostly presented FCC integrated program (ee + hh),
- and the following key technologies:
 - SRF technology R&D, highlighting the new SRF facility at CERN (mid 2029)
 - High field magnet NbTi → Nb₃Sn → HTS, FCC-hh requires higher temperature magnets, current LHC dipoles at 1.8K in FCC would lead to 4TWh, 4 times CERN electric consumption!
 - Briefly covered muon collider as the magnets should have high gradients and survive `high' heat load (5-10kW) and high radiation dose (20-40MGy)

How to further optimise SRF?

Increasing the accelerating gradient

• Reduction in number of cavities, less space required, reduced cryogenic power, reduced RF power distribution,...

Increasing the quality factor **Q**

 Less power deposited, reduction of cryogenic needs hence reduction in electricity consumption

Using higher temperature superconducting materials

 Could allow RF cavities to run at 4.5K instead of 1.9K as used for high performance Nb cavities – reduced cryogenic needs

Thin film SRF technology offers a pathway to enhance performance and cost-effectiveness

Substantial R&D required and ongoing.

A new superconducting RF facility at CERN

Purpose:

- R&D on single and multi-layer thin film coated and bulk superconducting cavities
- R&D on higher temperature superconducting cavity materials
- Prototyping and pre-series for FCC-ee
- R&D on the process to maximise throughput, reproducibility and minimise resources

Goal:

- Limit the operational cost of new large projects
- Reduce capital investment in SRF systems

Start operation mid-2029

Concluding Remarks

Multiple, competitive, complementary, and challenging design studies for future facilities are being undertaken

- The FCC feasibility study will conclude in March 2025, followed by a resource loaded pre-TDR phase
- The ESPPU process has been launched and will conclude in 2026, providing direction

Each generation of facilities pushes the boundaries of technology

- This requires substantial R&D and collaboration in various key domains
- New technological developments can enhance societal well-being and drive economic economic growth

Studies of future facilities provide a fertile ground for developing new technologies, while currently operational facilities serve as test-beds for these innovations.

The HL-LHC will contain with Nb3Sn superconducting magnets, experienced gained will feedback into the R&D

No new facility can be considered if sustainability is not fully embedded in the design process

ichep2024.org

42nd International Conference on High Energy Physics July 18-24 2024 Prague Czech Republic

Panel discussion on future colliders