

Theory aspects of jets & jet flavour definition

Simone Caletti

COMETA workshop on artificial intelligence for multi-boson physics 01.10.2024, Amsterdam

Outline

- I. Introduction:
 - hadronic jets
 - the jet flavour problem
- II. Jet flavour algorithms
 - Flavour-kt
 - Soft Drop Flavour
 - Flavour anti-kt (CMP)
 - Flavour dressing (GHS)
 - Interleaved Flavour Neutralization (IFN)

III. Comparison between the algorithms

I. Introduction

Jets are probe of the underlying process

But we need to define what we call "jet".

- Cone algorithmsSequential recombination algorithms

Gen-k_t recombination algorithms

- Take the particles in the events as our initial list of objects.
- From this list build the *inter-particle distance* as

$$d_{ij} = \min\left(p_{T,i}^{2p}, p_{T,j}^{2p}\right) \Delta_{ij}^2$$

where we introduced

$$\Delta_{ij} = \sqrt{(\phi_i - \phi_j)^2 + (\eta_i + \eta_j)^2}$$

and the beam distance as

 $d_{B,i} = p_{T,i}^{2p} R^2$

with R the jet radius.

- Iteratively find the smallest among all the two distances:
 - If $d_{ij} < d_{B,i}$ then remove i and j and recombine them into a new object k which is added to the new list.
 - If $d_{B,i} < d_{ij}$ then it is called a *jet* and removed from the list.

Grooming: Soft Drop

Larkoski et al. (2014)

$$\frac{\min(p_{T,i}, p_{T,j})}{p_{T,i} + p_{T,j}} > z_{\text{cut}} \left(\frac{\Delta_{ij}}{R}\right)^{\beta}$$

pT -4-2 Ø

 Break the jet j into two subjets by undoing the last stage of C/A clustering and label them as j1 and j2.

- 2. If j1 and j2 pass the SD condition then deem j to be the final soft-drop jet.
- 3. Else: redefine

$$j = \max_{p_T} [j_1, j_2] __{\text{while}(! \text{ SD})}$$

Experimental definition of flavoured jet

- Heavy-quark-initiated jets are experimentally identified exploiting B hadron lifetime, i.e. the display vertex.
- Jets are defined with anti-kt.

- Take the 4-momenta of reconstructed anti-kt jets and B hadrons with pt > ptcut ~5GeV
- Assign a B to a jet if $\Delta R < R_0 \sim 0.3$
- If at least one B is assigned to jet J, then J is a b-jet

What can go wrong?

- Infra-Red and Collinear Safety! IRC safety is mandatory to compute things beyond LO.
- An observable (or a jet definition) is IRC safe if, in the limit of a collinear splitting, or the emission of an infinitely soft particle, the observable (jet) does not change:

$$O(X; p_1, \dots, p_n, p_{n+1} \to 0) \to O(X; p_1, \dots, p_n)$$

 $O(X; p_1, \dots, p_n \parallel p_{n+1}) \to O(X; p_1, \dots, p_n + p_{n+1})$

- An IRC-unsafe HF jet definition with massless partons, leads to divergent results in perturbation theory (and cannot be used)
- An IRC-unsafe HF jet definition with massive quarks, leads to finite but IRC-sensitive results in perturbation theory (large logs of m/pt)

Issue n.1: NLO

- Consider the Z+b (or c) jet process
- Problematic configuration at NLO: $g \rightarrow b\overline{b}$ is collinear divergent (with zero mass).
- The corresponding singularity is canceled when we add the virtual correction, which happens if and only if real and virtual are in the same flavour bin (i.e. this is a gluon = no net flavour)

- This is particularly relevant for observables that are inclusive over the b-jet substructure, like the pt
- Important effects at high-pt

The ptcut on hadrons

- Furthermore, q → qg collinear splittings with a hard gluon leads to a flavourless jet because of the cut over the pt of the B hadron
- If we implement it at parton level, the soft quark may fail the cut, turning the jet into a gluon one \rightarrow collinear unsafe!
- With ptcut it requires a fragmentation function, as we are identifying the particle.
 Without the ptcut, any IRC safe flavour agnostic algorithm will recombine the qg pair together.

Gauld et al. (2023)

Flavour recombination schemes

 However, the NLO issues can be easily fixed from the theory point of view using a different flavour recombination scheme

• This comes with large experimental baggage (reconstruction, mistag, etc.)

jet contents scheme	b	$b + \bar{b}$	b + b	
"any flavour"	b	b	b	simplest experimentally (but collinear unsafe for $m_b \rightarrow 0$)
net flavour	b	g	2 <i>b</i>	theoretically "ideal" definition; but not robust wrt B–Bbar oscillations
flavour modulo 2	b	g	g	theoretically OK; robust wrt B–Bbar oscillations

From Gavin Salam's talk at Durham workshop

Issue n.2: NNLO

- Things are more complicated at NNLO, because soft large-angle $g \rightarrow b\overline{b}$ splittings can alter the flavour of the jet
- This leads to an IRC divergence for massless quarks
- Counting the net flavour is not enough and there is **no way of fixing this with a flavour-agnostic jet algorithm**. We need to reconsider the algorithm itself.

The first solution: flavour-kt

Introduce a flavour-sensitive metric that reflects the absence of soft quark singularities

$$d_{ij}^{\text{BSZ}} = \left(\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2\right) \times \begin{cases} \max\left(k_{ti}^2, k_{tj}^2\right), & \text{if the softer of } i, j \text{ is flavored}, \\ \min\left(k_{ti}^2, k_{tj}^2\right), & \text{if the softer of } i, j \text{ is flavorless.} \end{cases}$$

Banfi et al. (2006)

- Flavour-kt is IRC safe, because it recombines together the problematic NNLO soft pair
- However, it is far from straightforward to implement in experimental analysis, because it is not anti-kt so the jets have

 a different kinematics and it requires a knowledge of the flavour at each step of the clustering procedure
- NNLO calculations have been performed with flavour-kt have been done in the past years, but they required an extra unfolding procedure to connect theory and experiment

II. Jet Flavour Algorithms

The "jet flavour gate"

Soft Drop Flavour (SDF)

[SC, Larkoski, Marzani, Reichelt (2205.01117) and (2205.01109)]

- 1. Cluster jets with any IRC safe clustering algorithm
- 2. Recluster the jet with JADE
- 3. At each stage require that particles i and j pass the SD condition for $\beta > 0$.
- 4. Return the net flavor of the groomed jet as the flavor of the initial jet

Flavour anti-kt (CMP)

[Czakon, Mitov, Poncelet (2205.11879)]

standard anti- k_t measure

$$d_{ij}^{(F)} = \left(\frac{\Delta_{ij}}{R}\right)^2 \min(k_{T,i}^{-2}, k_{T,j}^{-2}) \begin{cases} \mathcal{S}_{ij}, & \text{if both} \\ 1, & \text{otherw} \end{cases}$$
$$\mathcal{S}_{ij} = 1 + \Theta(1 - \kappa_{ij}) \cos\left(\frac{\pi}{2}\kappa_{ij}\right) & \text{with} \quad \mathcal{A}_{ij} \end{cases}$$

if both i and j have non-zero flavor of opposite sign otherwise

$$\kappa_{ij}$$
 with $\kappa_{ij} \equiv \frac{1}{a} \frac{k_{T,i}^2 + k_{T,j}^2}{2k_{T,\max}^2}$

Flavour dressing (GHS)

[Gauld, Huss, Stagnitto (2208.11138)]

- Input flavour-agnostic jets (e.g. anti-kt) and fl,avour information (e.g. b or c quarks, stable heavy flavour hadrons, etc)
- **Preliminary step:** build flavour clusters recombining flavour inputs with radiation close in angle, but without touching the soft particles (thanks to the Soft Drop condition)
- **Dressing step:** in order to assign flavour to jets, run a sequential recombination algorithm with flavour-kt like distances between jets and flavour clusters.

Interleaved Flavour Neutralization (IFN)

[Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler (2306.07314)]

Systematic IRC safety tests

Numerical framework developed by the IFN group has allowed to discover potentially problematic configurations at higher orders

FSR-DS = double-soft ISR-DS FC = FS hard-collinear IC = IS hard-collinear

possibly nested

N / / / /

		CMP	GHS	FN1	FN2	anti- k_t
	FSR-DS					
	ISR-DS					
α_s^2	FC IC					
	FC FC					
	IC IC					

From Ludovic Scyboz slides at Moriond QCD 2023

Pros and cons of massive calculations

In principle, massive calculations do not require an IRC safe flavour algorithm (screening effect due to m_q).

However, presence of large logarithms $\log(Q^2/m_q^2)$, spoiling the convergence of the perturbative series ($\alpha_s \log(m_Z^2/m_c^2) \sim 1$).

Benefits of massless calculations with IRC safe jet tagging:

- in the initial-state, a massless calculation allows for a resummation of $\log(Q^2/m_q^2)$ by PDF evolution (crucial in some cases e.g. when probing non-perturbative charm PDF)
- in the final-state, an IRC safe prescription implies a suppressed sensitivity on $\log(Q^2/m_q^2)$, both in fixed order and resummed calculations / parton showers.

III. Comparison between the algorithms

Disclaimer: all results presented here are preliminary Particular credits to all the member of the LH23 working group for this plots

Les Houches2023

A lot of discussions (and headaches) around flavoured jets...

(Thank you Giovanni for the collage)

Les Houches2023

PART 1

Les Houches, there's a place you can go I said, Les Houches, when you're short on ideas You can stay there, and I'm sure you will find Many ways to have a good time!

PART 2

Les Houches, where we all can discuss I said, Les Houches, in the beautiful Alps You can stay there, and then try to combine truth and reco, then go drink wine!

CHORUS A

We want jet's flavour to be I. R. C. Safe We want jet's flavour to be I. R. C. Safe Cannot just count the b's, of an anti-kt because even a soft gluon splits

PART 1

Les Houches, there's a place you can go I said, Les Houches, when you're short on ideas You can stay there, and I'm sure you will find Many ways to have a good time!

PART 2

Les Houches, where we all can discuss I said, Les Houches, in the beautiful Alps You can stay there, and then try to combine truth and reco, then go drink wine!

CHORUS B

We should reduce the ne-ga-tive weights and compute processes at N3LO This is our wishlist, to make Joey in peace and then make the best of stats

CHORUS A x2

We want jet's flavour to be I. R. C. Safe We want jet's flavour to be I. R. C. Safe Cannot just count the b's, of an anti-kt because even a soft gluon splits

...and even the LH2023 song "I.R.C. safe" (to the tune of YMCA) was dedicated to flavoured jets

Les Houches2023

A common framework with FastJet implementation of the four algorithms was required

jetflav			
Popular repositories IFNPlugin Implementation of interleaved flavour neutralisation	Public	SDFlavPlugin	Public
		● C++	
CMPPlugin	Public	GHSAlgo	Public
● C++		● C++	

A FastJet contrib is in preparation

LHCb fiducial cuts

[ATLAS 2024 (2109.08084)]

Z bosons	$p_{\rm T}(\mu) > 20 {\rm GeV}, 2.0 < \eta(\mu) < 4.5, 60 < m(\mu^+\mu^-) < 120 {\rm GeV}$ $20 < n_{\rm T}(i) < 100 {\rm GeV}, 2.2 < n(i) < 4.2$	
Charm jets	$-\frac{p_{\rm T}(c \text{hadron}) > 5 \text{GeV}, \Delta R(j, c \text{hadron}) < 0.5}{p_{\rm T}(c \text{hadron}) > 5 \text{GeV}, \Delta R(j, c \text{hadron}) < 0.5} \longrightarrow$	Replace by the respective
Events	$\Delta R(\mu, j) > 0.5$	navoar algorithmis

~

Flavoured Jet algorithms

- SDF (beta = 1, zcut = 0.1)
- GHS (omega = 2, alpha = 1, ptcut = 15 GeV)
- IFN (alpha = 2, omega = 3 alpha)
- CMP (a = 0.1)
- All with |#b/B| mod 2 == 1 flavour tag

Anti-kT for comparison:

- ATLAS style truth-level ghost-tagging \rightarrow CONE
- Anti-kT CMS truth level tag → TAG
- Anti-kT odd #B-hadron tag → AKT

Z+b-jet @ NNLO (central rapidity)

Plots from René Poncelet

• New algorithms agree at the percent level for most distributions

• More b-tags reduce the differences, this because there is less freedom for the algorithms

Z+b-jet @ NLO+PS parton level (central rapidity)

Plots from René Poncelet and Daniel Reichelt

- We find consistent results at parton level for all the algorithms, even at high b-jet pt (where more bb pairs are emitted)
- We observe a good perturbative convergence
- FO and PS provides a consistent pictures
- Note: H7 A0 and SHERPA keep massive b-quarks in the shower, while H7 dipole is with massless b-quarks.

Z+b-jet @ NLO+PS hadron level (central rapidity)

Plots from René Poncelet and Daniel Reichelt

- Differences are slightly larger at hadron level
- Massless H7 dipole close only with IFN
- From these plots it seems that the differences between NLOPS and FO is IFN < CMP < GHS ~ SDF

Charm VS Beauty

Plots from René Poncelet and Daniel Reichelt

• Pictures for c-jets are similar to the b-jet ones. Massless H7 dipole shower is closer to the massive one (as expected)

Comparison to experimental strategies

Plots from René Poncelet and Daniel Reichelt

• This is NLO+PS with just anti-kt jets and different strategies to assign flavour label

• Large differences between current experimental strategies, likely due to net-flavour VS any-flavour

Performance studies of FastJet implementation

From Giovanni Stagnitto's talk in Durham. Plots performed by Ludovic Scyboz.

Clustering time of Z+jet Pythia8 events

- GHS and CMP are slower with higher multiplicities, some optimization are currently ongoing
- IFN has already been optimized, while SDF is basically using the SD algorithm already implemented in FastJet

Performance studies of FastJet implementation

From Giovanni Stagnitto's talk in Durham. Plots performed by Ludovic Scyboz.

Clustering time of Z+jet Pythia8 events

Conclusion: does all of this matter?

[ATLAS 2024 (2109.08084)]

- At large pt non-perturbative corrections are small and comparison to fixed-order makes sense.
- However, unfolding to IRC safe algorithms can be sizable (sometimes bigger than the NNLO correction)
- Most of the effect is likely due to any-flavour vs net-flavour

We must do better if we want to do NNLO phenomenology!

Thank you for your attention!