

Graph Convolutional Neural
Networks for HEP

Frédéric Magniette

Introduction
● Uniformity of HEP data
● 3D point with energy

measurements and
timing

● Different granularity
● Barycenter of sensors
● Fixed geometry
● How to handle such

data with neural
networks?

Similar Applications
● A lot of application gets unordered 3D point cloud as

input
● Main application : robotics, self-driving cars,

monitoring (rivers level, volcanoes, glacier…) from
drone or satellite

● New dedicated algorithms from 2015 to now

Point cloud data
● Points Pi in Rk (k≥3)

– 3D coordinates
– (k-3) features : energy measurements, timing,

calibration...
● 4 main properties

– unordered : need for a permutation invariant operator
– Interaction among points : the metric distance defines

meaningful neigbourings
– Invariance under transformation : some rotations and

translations should not modify the result
– Sparsity

Problematics
● Three problematics

– Classification
– Part segmentation
– Semantic segmentation

Question
● How to transpose the

tremendous success
obtained with 2D image
convolution to 3D point
cloud ?

● Before 2015 :
handmade feature

● A lot of work based on
neural network from
2015 to now

?

7

Point Cloud Neural Networks

Three main techniques
– Voxelization and 3D

Convolution (2015-2016)
– Symmetric pooling (2017-

2018)
– Graph Convolution (2017-

now)
Precision

Pixels Convolution

● Apply kernel on image (like the convolution filter)
● kernel is learnable ()
● Filter is shared over the whole picture
● Idea : creating maps of features (one kernel per feature)

Pooling

● Reduce the dimensionality of the feature
maps

● Move to higher level of abstraction
● Max pool is widely used

Convolutional network

● Network structure :
– Alternance of convolution & pooling
– Flattering (sometimes called readout)
– Multi-layer perceptron

How it works ?

● Feature maps aggregates more and more
details to converges to high level recognition
patterns

● Flattened high-level feature map is input for
multi-layer perceptron

Why it works ?
● The two operations derive

naturally from local space
Euclidean nature
– Euclidean space → global

translation-invariance
(stationarity) → convolution

– local translation-invariance →
pooling

● Dream complexity
– O(1) parameters per filter

(independant of image size)
– O(n) complexity in time per layer

(n=#pixels)

Idea of Graph convolution

● Build a graph
structure with the
point cloud

● Capture the locality in
the graph adjacency

● Apply new techniques
of graph convolution

Spectral vs Spatial
● Spectral method has been the first to be developped,

based on algebraic / spectral graph theory (80’s)
● Contrary to spectral, spatial is stable to graph

change
● Nowadays almost only spatial methods are used

Neural Message Passing Network
● Generic recipe for spatial

graph convolution
– Convolves the central node

xi with its neighbors xj in
N(v)

– Iterate

● Nice complexity O(m)
Gilmer & al, Neural
message passing for
quantum chemistry, 2017

 16

Formalism
● Every node has a feature vector changing at each

iteration (convolutional step)
● xi

t is the feature vector of node i at convolutional
step t

● Every edge between xi and xj has a feature vector
ei,j

● Convolution step which convolves the central
node xi with its neighbors xj in N(v)

● □ is the aggregator function (commutative &
normalized : max, average..)

● Φ is the message function (learnable
parameters)

● γ is the update function (learnable parameters)
● Learnable parameters are θγ and θΦ

This recipe includes
Euclidian CNN

●

● □ = sum
● Regular graph (no weight)
● Every vertex is self looped

→ Euclidian CNN

Graph pooling

● Produce a sequence of coarsened graphs
● Graclus algorithm
● Fusion of vertices

– Connected by a common edge
– Max, sum or average pooling of collapsed vertices

Graph classification
architecture

● Non Euclidian convolution with pooling
● Readout to flatten the feature maps
● Multi-layer perceptron
● Can be used for classification (Softmax) and regression (ReLU)

or ReLU

Network inference
architecture

● Successive feature maps induce a new graph
● Semi-supervised learning
● Can be used successfully for segmentation

Dynamic extension

● It is shown to work better if the
graph is re-computed at every step

● The network learns how to build
the graph

● Cluster similar features in the
feature space

● Very resource demanding (multiple
KNN)

Wang & al, Dynamic Graph
CNN for Learning on Point
Clouds, 2019

GCNN for HEP
● Main ideas

– Being agnostic from physics
– Let the neural network « learn / invent »

the discriminating criterions
– Capture the geometric shapes in a

space-time-energy-any_other_features
space

– Get all informations from this point in
space

Particle identification and
regression

● Convert
spacetime_energy
_features
geometry in
classification

● Infer continuous
parameters from
the geometry
(incident particle
energy, angle...)

Particle Segmentation
● Prediction of the energy

fraction of each sensor
belonging to each shower

● Define a loss function for
hit segmentation

Qasim, Kieseler & al, Learning
representations of irregular
particle-detector geometry
with distance-weighted graph
networks, 2019

25

Autoencoder extension

Latent
Space

● 3 parts
● The encoder : input → inner representation
● The latent space → the space were live the

representations
● The decoder : inner representation → output

● The training is done to maximize input=output
encoder decoder

26

GCNN autoencoder
● Super-complicated architectures

– variational autoencoder
– deconvolution, un-pooling, un-readout

operations to implement

27

Fast Data Generation
● Generate data directly from latent

space
– Generate random vector of coordinate in

latent space
– apply the decoder
– Obtain a fast simulated event

28

Quality problems
● Unknown objects can appear similar to nothing in

the training dataset
● Latent space completeness and compacity →

variational autoencoders
● High risk of over-fitting (regularization)
● High quality can be obtained by GAN architecture

29

Outlier Detection
● Principle : outlier reconstruction is worse

because they fit less in the generative
model

● No assumption on the nature of the
outlier

● Implementation
– Calculate the quality of reconstruction in the

autoencoder

– Compare the value to the statistic of
training

– Use a threshold to decide the outlier nature

30

Coloring
● Autoencoders are used every day to color b&w pictures or to adjust

color palette
● Could be extended to color graph nodes (tagging)
● Training procedure

– take colored image x
– generate b&w image y
– use y as input and train on the loss

A simple example
● OGCID Project
● Highly granular sampling
calorimeter

● 26 ECAL + 24 HCAL layers
● Different granularity
● Regression and classification of 3
types of events

e-/γ event π event μ event

Graph Convolution
Pipeline

Graph generation Graph pooling

Unordered point
cloud

O
bjective

Repeated layers

Graph convolution
Graph Readout

Graph Generation
● Build arbitrary edges between sparse, multi-dimensional

data-points
● Typically: k nearest neighbours (KNN)

Optimization by Proximity
Tables

● Exploiting the static geometry of particle detectors
● For each sensor, order its neighbours by increasing

distance in “proximity table” (PT)
● Reducing mean complexity from O(n2) to O(log2(n))

Sensor
IDs

1
2
...
99

17
75

3

38
16

98

...

...

...

42
68

22

Increasing order wrt.
metric

Reducing PTs
● Can cut PT to remove rarely explored columns
● Allows FPGA implementation
● Study of effect on performance in progress

Message Passing
Convolution

● Message function Φ : Linear combination, increases the
number of features by a factor 2

● Aggregator □ : feature-wise pooling (classification: max,
regression: mean)

● Update function γ : Self-loop (i.e. aggregate with message
from itself)

Pooling
● Pooling [Grattarola2024]:

i. Selection : which edges to collapse
ii. Reduction: feature combination
iii. Connection: adjacency update

● Dedicated selection algorithm :
Treclus

● Collapse all edges with a
distance inferior to an
adjustable threshold

● Reduction
● choosing randomly a
destination node from the
cluster

● using max for classification
and sum for regression

Mean

Sum

Example of pooling

Original Graph Pooling Step 1

Pooling Step 2 Pooling Step 3

Readout problematics
● Need to flatten graph structure as input for an
MLP

● Can be tricky to keep graph structural
information
● No order for nodes
● No order for edges

● Need a consistent approach

Random order of readout
unintelligible →

Symmetry Aware Readout
● Known geometry: embed graph back into its
geometry

● Detector sliced up in readout regions that
respects rotational symmetry

● Pool features within same regions (max or sum)
● Flatten in consistent order

Multi-Layer Perceptron

● Fully connected MLP
● 5-6 hidden layers
● Leaky ReLU activation
● Output size:

● 3 (PID classification)
● or 1 (Energy regression)

Particle ID performance
● Simulate particle showers at

variable energy (10-100GeV)
● Classify e-/γ, μ, π
● State of the art performance
● Difficult PID tasks, need more

samples

Early showering πe- induced hadronic jet

Energy Regression
Pipeline

e-/γ
π
μ

Particle Energy

PID (classification)

π energy regression

e-/γ energy regression

Energy Regression
Performance

● Regression precision conform to detector
● e-/γ better precision than π: different sampling

fractions and physics
● Asymmetry of tails: detector properties

e-/γ energy regression π energy regression

Energy resolution

Stochastic fluctuations in
shower development

Noise from readout
electronics

Systematic noise (e.g.
dark noise...)

● Obtained S value : 20.15 %
● Theoretical prediction : between 19 and 24 %
● Testbeam results 21 % (different detector)

Conclusion
● Graph convolutional neural

networks can handle HEP data
● State of the art performance
● Algorithmical optimization increases

implementability (high throughput
systems, FPGA…)

● Numerous extensions

Perspectives

● More complicated PID : jets !
● Segmentation
● Parallelization
● FPGA implementation
● Fast simulation
● Outlier detection (DQM, trigger)
● Autoencoder tagging

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47

