Graph Convolutional Neural Networks for HEP Frédéric Magniette

aboratoire

Leprince-Ringuet

Introduction

- Uniformity of HEP data
- 3D point with energy measurements and timing
- Different granularity
- Barycenter of sensors
- Fixed geometry
- How to handle such data with neural networks?

Similar Applications

- A lot of application gets unordered 3D point cloud as input
- Main application : robotics, self-driving cars, monitoring (rivers level, volcanoes, glacier...) from drone or satellite
- New dedicated algorithms from 2015 to now

Point cloud data

- Points P_i in R^k (k≥3)
 - 3D coordinates
 - (k-3) features : energy measurements, timing, calibration...
- 4 main properties
 - unordered : need for a permutation invariant operator
 - Interaction among points : the metric distance defines meaningful neigbourings
 - Invariance under transformation : some rotations and translations should not modify the result
 - Sparsity

Problematics

- Three problematics
 - Classification
 - Part segmentation
 - Semantic segmentation

Question

- How to transpose the tremendous success obtained with 2D image convolution to 3D point cloud ?
- Before 2015 : handmade feature
- A lot of work based on neural network from 2015 to now

Point Cloud Neural Networks

Three main techniques

Voxelization and 3D
 Convolution (2015-2016)

7

- Symmetric pooling (2017-2018) $f(x_1,...,x_n) \approx g(h(x_1),...,h(x_n))$
- Graph Convolution (2017now)

Precision

Pixels Convolution

- Apply kernel on image (like the convolution filter)
- kernel is learnable $(k_{i,j})$
- Filter is shared over the whole picture
- Idea : creating maps of features (one kernel per feature)

Pooling

- Reduce the dimensionality of the feature maps
- Move to higher level of abstraction
- Max pool is widely used

Convolutional network

- Network structure :
 - Alternance of convolution & pooling
 - Flattering (sometimes called readout)
 - Multi-layer perceptron

How it works ?

- Feature maps aggregates more and more details to converges to high level recognition patterns
- Flattened high-level feature map is input for multi-layer perceptron

Why it works ?

- The two operations derive naturally from local space Euclidean nature
 - Euclidean space → global translation-invariance (stationarity) → convolution
 - local translation-invariance \rightarrow pooling

Cat

- Dream complexity
 - O(1) parameters per filter (independant of image size)
 - O(n) complexity in time per layer (n=#pixels)

Idea of Graph convolution

- Build a graph structure with the point cloud
- Capture the locality in the graph adjacency
- Apply new techniques of graph convolution

Spectral vs Spatial

- Spectral method has been the first to be developped, based on algebraic / spectral graph theory (80's)
- Contrary to spectral, spatial is stable to graph change
- Nowadays almost only spatial methods are used

Neural Message Passing Network

- Generic recipe for spatial graph convolution
 - Convolves the central node x_i with its neighbors x_j in N(v)
 - Iterate

• Nice complexity O(m)

Gilmer & al, Neural message passing for quantum chemistry, 2017

Formalism

- Every node has a feature vector changing at each iteration (convolutional step)
- x_i^t is the feature vector of node i at convolutional step t
- Every edge between x_i and x_j has a feature vector e_{i,j}
- Convolution step which convolves the central node x_i with its neighbors x_j in N(v)

$$x_i^{t+1} = \gamma_{\theta_{\gamma}}(x_i^t, \underset{j \in N(i)}{\Box} \phi_{\theta_{\phi}}(x_i^t, x_j^t, e_{i,j}))$$

- is the aggregator function (commutative & normalized : max, average..)
- Φ is the message function (learnable parameters)
- y is the update function (learnable parameters)
- Learnable parameters are $\boldsymbol{\theta}_{_{\boldsymbol{v}}}$ and $\boldsymbol{\theta}_{_{\boldsymbol{\Phi}}}$

This recipe includes Euclidian CNN

- $\Phi_{\theta}(x_i, x_j, e_{ij}) = x_j * \theta_{ij}$
- 🗆 = sum
- Regular graph (no weight)
- Every vertex is self looped

$$x_{k,l}^{t+1} = \sum_{i,j \in [-s..s]^2} x_{k+i,l+j}^t * \theta_{i,j}$$

→ Euclidian CNN

35	40	41	45	50
40	40	42	46	52
42	46	50	55	55
48	52	56	58	60
56	60	65	70	75

Graph pooling

- Produce a sequence of coarsened graphs
- Graclus algorithm
- Fusion of vertices
 - Connected by a common edge
 - Max, sum or average pooling of collapsed vertices

Graph classification architecture

- Non Euclidian convolution with pooling
- Readout to flatten the feature maps
- Multi-layer perceptron
- Can be used for classification (Softmax) and regression (ReLU)

Network inference architecture

- Successive feature maps induce a new graph
- Semi-supervised learning
- Can be used successfully for segmentation

Dynamic extension

- It is shown to work better if the graph is re-computed at every step
- The network learns how to build the graph
- Cluster similar features in the feature space
- Very resource demanding (multiple KNN)

Wang & al, Dynamic Graph CNN for Learning on Point Clouds, 2019

GCNN for HEP

- Main ideas
 - Being agnostic from physics
 - Let the neural network « learn / invent » the discriminating criterions
 - Capture the geometric shapes in a space-time-energy-any_other_features space
 - Get all informations from this point in space

Particle identification and regression

- Convert spacetime_energy _features geometry in classification
- Infer continuous parameters from the geometry (incident particle energy, angle...)

C. Lippmann – 2003

Particle Segmentation

- Prediction of the energy fraction of each sensor belonging to each shower
- Define a loss function for hit segmentation

$$L = \sum_{k} \frac{\sum_{i} \sqrt{E_i t_{ik}} (p_{ik} - t_{ik})^2}{\sum_{i} \sqrt{E_i t_{ik}}}$$

Qasim, Kieseler & al, Learning representations of irregular particle-detector geometry with distance-weighted graph networks, 2019

Autoencoder extension

- 3 parts
 - The encoder : input \rightarrow inner representation
 - The latent space \rightarrow the space were live the representations
 - The decoder : inner representation \rightarrow output
- The training is done to maximize input=output

GCNN autoencoder

- Super-complicated architectures
 - variational autoencoder
 - deconvolution, un-pooling, un-readout operations to implement

26

Fast Data Generation

- Generate data directly from latent space
 - Generate random vector of coordinate in latent space
 - apply the decoder
 - Obtain a fast simulated event

28x28x1

Quality problems

- Unknown objects can appear similar to nothing in the training dataset
- Latent space completeness and compacity $\ \ \rightarrow$ variational autoencoders
- High risk of over-fitting (regularization)
- High quality can be obtained by GAN architecture

Outlier Detection

- Principle : outlier reconstruction is worse because they fit less in the generative model
- No assumption on the nature of the outlier
- Implementation
 - Calculate the quality of reconstruction in the autoencoder

$$L(x) = (x - \hat{x})^2$$

- Compare the value to the statistic of training
- Use a threshold to decide the outlier nature

Coloring

- Autoencoders are used every day to color b&w pictures or to adjust color palette
- Could be extended to color graph nodes (tagging)
- Training procedure
 - take colored image x
 - generate b&w image y
 - use y as input and train on the loss $L(x,\hat{x})$

IMAGE COLORING

Before

IMAGE NOISE REDUCTION

Before

After

A simple example

- OGCID Project
- Highly granular sampling calorimeter
- 26 ECAL + 24 HCAL layers
- Different granularity
- Regression and classification of 3 types of events

e⁻/γ event

π event

 μ event

Graph Convolution Pipeline

Graph Generation

- Build arbitrary edges between sparse, multi-dimensional data-points
- Typically: k nearest neighbours (KNN)

Optimization by Proximity Tables

- Exploiting the static geometry of particle detectors
- For each sensor, order its neighbours by increasing distance in "proximity table" (PT)
- Reducing mean complexity from O(n²) to O(log²(n))

Reducing PTs

- Can cut PT to remove rarely explored columns
- Allows FPGA implementation
- Study of effect on performance in progress

Message Passing Convolution

- Message function Φ : Linear combination, increases the number of features by a factor 2
- Aggregator
 : feature-wise pooling (classification: max, regression: mean)
- Update function γ : Self-loop (i.e. aggregate with message from itself)

$$x_{v}^{(t+1)} = \underset{w \in \tilde{\mathcal{N}}(v)}{\Box} \text{Leaky-ReLU}\left(\phi \left[x_{v}^{(t)} \ x_{w}^{(t)} \ d(v, w)\right]\right)$$

Pooling

- Pooling [Grattarola2024]:
- i. Selection : which edges to collapseii. Reduction: feature combinationiii. Connection: adjacency update
- Dedicated selection algorithm : Treclus
- Collapse all edges with a distance inferior to an adjustable threshold
- Reduction
 - choosing randomly a destination node from the cluster
 - using max for classification and sum for regression

Example of pooling

Pooling Step 1

Readout problematics

- Need to flatten graph structure as input for an MLP
- Can be tricky to keep graph structural information
 - No order for nodes
 - No order for edges
- Need a consistent approach

Random order of readout unintelligible \rightarrow

Symmetry Aware Readout

- Known geometry: embed graph back into its geometry
- Detector sliced up in readout regions that respects rotational symmetry
- Pool features within same regions (max or sum)
- Flatten in consistent order

Multi-Layer Perceptron

- Fully connected MLP
- 5-6 hidden layers
- Leaky ReLU activation
- Output size:
 - 3 (PID classification)
 - or 1 (Energy regression)

Particle ID performance

e⁻ induced hadronic jet

- Simulate particle showers at variable energy (10-100GeV)
- Classify e^{-}/γ , μ , π
- State of the art performance
- Difficult PID tasks, need more samples

Energy Regression Pipeline

Energy Regression Performance

- Regression precision conform to detector
- e^{-}/γ better precision than π : different sampling fractions and physics
- Asymmetry of tails: detector properties

Energy resolution

- Obtained S value : 20.15 %
- Theoretical prediction : between 19 and 24 %
- Testbeam results 21 % (different detector)

Conclusion

- Graph convolutional neural networks can handle HEP data
- State of the art performance
- Algorithmical optimization increases implementability (high throughput systems, FPGA...)
- Numerous extensions

Perspectives

- More complicated PID : jets !
- Segmentation
- Parallelization
- FPGA implementation
- Fast simulation
- Outlier detection (DQM, trigger)
- Autoencoder tagging

