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Introduction
● Uniformity of HEP data 
● 3D point with energy 

measurements and 
timing

● Different granularity
● Barycenter of sensors
● Fixed geometry
● How to handle such 

data with neural 
networks?



  

Similar Applications
● A lot of application gets unordered 3D point cloud as 

input
● Main application : robotics, self-driving cars, 

monitoring (rivers level, volcanoes, glacier…) from 
drone or satellite

● New dedicated algorithms from 2015 to now



  

Point cloud data
● Points Pi in Rk (k≥3) 

– 3D coordinates 
– (k-3) features : energy measurements, timing, 

calibration...
● 4 main properties

– unordered : need for a permutation invariant operator
– Interaction among points : the metric distance defines 

meaningful neigbourings
– Invariance under transformation : some rotations and 

translations should not modify the result
– Sparsity



  

Problematics
● Three problematics

– Classification
– Part segmentation
– Semantic segmentation



  

Question
● How to transpose the 

tremendous success 
obtained with 2D image 
convolution to 3D point 
cloud ?

● Before 2015 : 
handmade feature

● A lot of work based on 
neural network from 
2015 to now

?
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Point Cloud Neural Networks

Three main techniques
– Voxelization and 3D 

Convolution (2015-2016)
– Symmetric pooling (2017-

2018)
– Graph Convolution (2017-

now)
Precision



  

Pixels Convolution

● Apply kernel on image (like the convolution filter)
● kernel is learnable   (       )
● Filter is shared over the whole picture
● Idea : creating maps of features (one kernel per feature)



  

Pooling

● Reduce the dimensionality of the feature 
maps

● Move to higher level of abstraction
● Max pool is widely used



  

Convolutional network

● Network structure : 
– Alternance of convolution & pooling
– Flattering (sometimes called readout)
– Multi-layer perceptron



  

How it works ?

● Feature maps aggregates more and more 
details to converges to high level recognition 
patterns

● Flattened high-level feature map is input for  
multi-layer perceptron



  

Why it works ?
● The two operations derive 

naturally from local space 
Euclidean nature
– Euclidean space → global 

translation-invariance 
(stationarity) → convolution

– local translation-invariance → 
pooling

● Dream complexity 
– O(1) parameters per filter 

(independant of image size)
– O(n) complexity in time per layer 

(n=#pixels) 



  

Idea of Graph convolution

● Build a graph 
structure with the 
point cloud

● Capture the locality in 
the graph adjacency

● Apply new techniques 
of graph convolution



  

Spectral vs Spatial
● Spectral method has been the first to be developped, 

based on algebraic / spectral  graph theory (80’s) 
● Contrary to spectral, spatial is stable to graph 

change
● Nowadays almost only spatial methods are used



  

Neural Message Passing Network
● Generic recipe for spatial 

graph convolution
– Convolves the central node 

xi with its neighbors xj in 
N(v)

– Iterate

● Nice complexity O(m) 
Gilmer & al, Neural 
message passing for 
quantum chemistry, 2017



  16

Formalism
● Every node has a feature vector changing at each 

iteration (convolutional step)
● xi

t is the feature vector of node i at convolutional 
step t

● Every edge between xi and xj has a feature vector 
ei,j

● Convolution step which convolves the central 
node xi with its neighbors xj in N(v)

● □ is the aggregator function (commutative & 
normalized : max, average..)

● Φ is the message function (learnable 
parameters)

● γ is the update function (learnable parameters)
● Learnable parameters are θγ and θΦ 



  

This recipe includes 
Euclidian CNN

●

● □ = sum
● Regular graph (no weight)
● Every vertex is self looped

→ Euclidian CNN



  

Graph pooling

● Produce a sequence of coarsened graphs
● Graclus algorithm
● Fusion of vertices

– Connected by a common edge
– Max, sum or average pooling of collapsed vertices



  

Graph classification 
architecture

● Non Euclidian convolution with pooling
● Readout to flatten the feature maps
● Multi-layer perceptron
● Can be used for classification (Softmax) and regression (ReLU)

or ReLU



  

Network inference 
architecture

● Successive feature maps induce a new graph
● Semi-supervised learning
● Can be used successfully for segmentation 



  

Dynamic extension

● It is shown to work better if the 
graph is re-computed at every step

● The network learns how to build 
the graph

● Cluster similar features in the 
feature space

● Very resource demanding (multiple 
KNN)

Wang & al, Dynamic Graph 
CNN for Learning on Point 
Clouds, 2019



  

GCNN for HEP
● Main ideas

– Being agnostic from physics
– Let the neural network « learn / invent » 

the discriminating criterions
– Capture the geometric shapes in a 

space-time-energy-any_other_features 
space

– Get all informations from this point in 
space



  

Particle identification and 
regression

● Convert 
spacetime_energy
_features 
geometry in 
classification

● Infer continuous 
parameters from 
the geometry 
(incident particle 
energy, angle...)



  

Particle Segmentation
● Prediction of the energy 

fraction of each sensor 
belonging to each shower 

● Define a loss function for 
hit segmentation

Qasim, Kieseler & al, Learning 
representations of irregular 
particle-detector geometry
with distance-weighted graph 
networks, 2019
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Autoencoder extension

Latent 
Space

● 3 parts
● The encoder :  input → inner representation
● The latent space → the space were live the 

representations
● The decoder : inner representation → output

● The training is done to maximize input=output
encoder decoder
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GCNN autoencoder
● Super-complicated architectures 

– variational autoencoder
– deconvolution, un-pooling, un-readout 

operations to implement
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Fast Data Generation
● Generate data directly from latent 

space
– Generate random vector of coordinate in 

latent space
– apply the decoder
– Obtain a fast simulated event



28

Quality problems
● Unknown objects can appear similar to nothing in 

the training dataset
● Latent space completeness and compacity → 

variational autoencoders
● High risk of over-fitting (regularization)
● High quality can be obtained by GAN architecture
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Outlier Detection
● Principle : outlier reconstruction is worse 

because they fit less in the generative 
model

● No assumption on the nature of the 
outlier

● Implementation
– Calculate the quality of reconstruction in the 

autoencoder 

– Compare the value to the statistic of  
training

– Use a threshold to decide the outlier nature
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Coloring
● Autoencoders are used every day to color b&w pictures or to adjust 

color palette
● Could be extended to color graph nodes (tagging)
● Training procedure

– take colored image x
– generate b&w image y
– use y as input and train on the loss



  

A simple example
● OGCID Project 
● Highly granular sampling 
calorimeter

● 26 ECAL + 24 HCAL layers
● Different granularity
● Regression and classification of 3 
types of events

e-/γ event π event μ event



  

Graph Convolution 
Pipeline

Graph generation Graph pooling

Unordered point 
cloud

O
bjective

Repeated layers

Graph convolution
Graph Readout



  

Graph Generation
● Build arbitrary edges between sparse, multi-dimensional 

data-points
● Typically: k nearest neighbours (KNN)



  

Optimization by Proximity 
Tables

● Exploiting the static geometry of particle detectors
● For each sensor, order its neighbours by increasing 

distance in “proximity table” (PT)
● Reducing mean complexity from O(n2) to O(log2(n))

Sensor 
IDs

1
2
...
99

17
75

3

38
16

98

...

...

...

42
68
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Increasing order wrt. 
metric



  

Reducing PTs
● Can cut PT to remove rarely explored columns
● Allows FPGA implementation
● Study of effect on performance in progress



  

Message Passing 
Convolution

● Message function Φ : Linear combination, increases the 
number of features by a factor 2

● Aggregator □ : feature-wise pooling (classification: max, 
regression: mean)

● Update function γ : Self-loop (i.e. aggregate with message 
from itself)



  

Pooling
● Pooling [Grattarola2024]:

i.  Selection : which edges to collapse
ii. Reduction: feature combination
iii. Connection: adjacency update

● Dedicated selection algorithm : 
Treclus

● Collapse all edges with a 
distance inferior to an 
adjustable threshold

● Reduction
● choosing randomly a 
destination node from the 
cluster

● using max for classification 
and sum for regression

Mean

Sum



  

Example of pooling

Original Graph Pooling Step 1

Pooling Step 2 Pooling Step 3



  

Readout problematics
● Need to flatten graph structure as input for an 
MLP

● Can be tricky to keep graph structural 
information
● No order for nodes 
● No order for edges

● Need a consistent approach

Random order of readout 
unintelligible →



  

Symmetry Aware Readout
● Known geometry: embed graph back into its 
geometry

● Detector sliced up in readout regions that 
respects rotational symmetry

● Pool features within same regions (max or sum)
● Flatten in consistent order



  

Multi-Layer Perceptron

● Fully connected MLP
● 5-6 hidden layers
● Leaky ReLU activation
● Output size: 

● 3 (PID classification) 
● or 1 (Energy regression)



  

Particle ID performance
● Simulate particle showers at 

variable energy (10-100GeV)
● Classify e-/γ, μ, π
● State of the art performance
● Difficult PID tasks, need more 

samples

Early showering πe- induced hadronic jet



  

Energy Regression 
Pipeline

e-/γ
π
μ

Particle Energy

PID (classification)

π energy regression

e-/γ energy regression



  

Energy Regression 
Performance

● Regression precision conform to detector 
● e-/γ better precision than π: different sampling 

fractions and physics
● Asymmetry of tails: detector properties

e-/γ energy regression π energy regression



  

Energy resolution

Stochastic fluctuations in 
shower development

Noise from readout 
electronics

Systematic noise (e.g. 
dark noise...)

● Obtained S value : 20.15 %
● Theoretical prediction : between 19 and 24 %
● Testbeam results 21 % (different detector)



  

Conclusion
● Graph convolutional neural 

networks can handle HEP data
● State of the art performance 
● Algorithmical optimization increases 

implementability (high throughput 
systems, FPGA…)

● Numerous extensions



  

Perspectives

● More complicated PID : jets !
● Segmentation
● Parallelization
● FPGA implementation
● Fast simulation
● Outlier detection (DQM, trigger)
● Autoencoder tagging
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