ENHANCED AI LLM-BASED PAPER REVIEWER FOR THE CMS EXPERIMENT

Annunziata Álvarez-Cascos

Supervisor: Florian Rehm

BE-CSS DSB

ern Ti:1: CERN

Automating Peer Review in CMS Experiment Publications with LLMs

We aim to automate and enhance the peer review of CMS experiment papers using a fine-tuned Llama 3.1 model.

This should result in improved paper quality and streamline the review process.

Table of Contents

01	Problem Statement
02	Proposed Solution
03	Process Overview
04	Training Data
05	Input and Output Examples
06	Status Overview
07	Next Steps

Problem Statement

Peer reviewing is **time-consuming:**

- Diverse writing styles.
- **Inconsistencies in writing styles** cause misunderstandings and slow down the review process.
- Not all authors follow recommended guidelines, leading to readability issues.

https://scribblygumblog.wordpress.com/2015/09/30/a-first-timers-guide-to-peer-review/

12/08/2024

Process Overview

12/08/2024

Training Data

' \\caption{Invariant mass\n distributions for the \$\\mu\\mu\\K\$ system used to reconstruct the\n \$\\bupsikp\$ normalization sample. The plot on the left show '\\begin{table}[hbtp]\n \\begin{center}\n\\caption{Summary of the systematic uncertainties for the\ninclusive fiducial cross section measurements.\\label{tab:syst '\\section{Determination of the strong coupling constant}\n\\label{sec:alphas}'}

'Similar to the \$\\X\\to \\Z\\Z\\to 4\\ell\$ study above, ten spin-two hypotheses, listed in Table~\\ref{table-scenarios},\nand three spin-one hypotheses, including 'A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant\nkinematic variables, can be found in Ref.~\ 'The differential cross sections are measured for two rapidity ranges: \$\\abs{y} \\leq 0.6\$ and \$0.6<\\abs{y}<1.2\$, as well as for the entire range \$\\abs{y}<1.2\$.

Input and Output Examples

Original paragraph (Sections):

where angular polarization coefficients \$A_i (\pt^\PZ, Y^\PZ, M^\PZ)\$ represent the ratio of cross section with a certain type of \PZ boson polarization to unpolarized one. The coefficients reflect the processes occurring at the parton level, so all of them are expected to be negligible at \$\pt^Z \sim 0\$ except for \$A_4\$, which connected with the electroweak nature of \PZ boson decay to couple of leptons, occurring with parity violation. This phenomena is also known as forward-backward asymmetry \$(A_{FB})\$. Coefficients \$A_0\$ and \$A_2\$ describe longitudinal (L) and transverse (T) polarizations of \PZ boson. \$A_1\$ - interference of L- and T- polarization states. An equation \$A_0 = A_2\$, famous as Lam-Tung relation \cite{LumTung_1978}, have a sense of system rotation invariance. However, this ratio does not satisfied due to the non-coplanarity of the interaction planes of involved partons and colliding protons, and other higher-order QCD effects. \$A_3\$, like \$A_4\$ based on axial and vector electroweak couplings of quarks and leptons and could be used for precise measurements of \swsq. \$A_5\$, \$A_6\$ and \$A_7\$ are expected to be small and may appear non-zero at NNLO QCD.

Corrected paragraph (Sections):

Corrected paragraph:

The angular polarization coefficients \$A_i (\pt^\PZ, Y^\PZ, M^\PZ)\$ represent the ratio of the cross section with a certain type of \PZ boson polarization to the unpolarized one. The coefficients reflect the processes occurring at the parton level, so all of them are expected to be negligible at \$\pt^Z \sim 0\$ except for \$A_4\$, which is connected with the electroweak nature of \PZ boson decay to a couple of leptons, occurring with parity violation. This phenomenon is also known as forward-backward asymmetry \$(A_{FB})\$. The coefficients \$A_0\$ and \$A_2\$ describe longitudinal (L) and transverse (T) polarizations of the \PZ boson, respectively. \$A_1\$ describes the interference of L- and Tpolarization states. The equation \$A_0 = A_2\$, known as the Lam-Tung relation \cite{LumTung_1978}, is a consequence of system rotation invariance. However, this ratio does not satisfy due to the non-coplanarity of the interaction planes of the involved partons and colliding protons, and other higher-order QCD effects. \$A_3\$, like \$A_4\$, is based on axial and vector electroweak couplings of quarks and leptons and could be used for precise measurements of \$\swsq\$. \$A_5\$, \$A_6\$, and \$A_7\$ are expected to be small and may appear non-zero at NNLO QCD.

Changes made (Sections):

- Added commas to improve sentence structure and readability.
- Added articles ("a", "the") to improve sentence structure and clarity.
- Changed "have a sense of" to "is a consequence of" to improve clarity and precision.
- Added "respectively" after listing the polarizations described by \$A_0\$ and \$A_2\$.
- Changed "could be used for precise measurements of \swsq" to "could be used for precise measurements of \$\swsq\$" (added dollar signs for LaTeX formatting).
- Changed "does not satisfied" to "does not satisfy" (correct verb form).
- Changed "like \$A_4\$ based on" to "like \$A_4\$, which is based on" to improve sentence structure.
- Changed "a couple of leptons" to "a couple of leptons" (added quotation marks for clarity).
- Changed "phenomena" to "phenomenon" (singular form) for consistency.

Training & Validation Accuracies: The model shows signs of learning, though there is still room for improvement.

Data & Accuracy: We are continuing to explore different approaches and parameters to achieve appropriate outputs.

Model Efficiency: Fine-tuning can take multiple days to weeks on a small 4-GPU cluster.

CERN

Al image generated by BING