MONITORING EVALUATION FOR LARGE-SCALE **ENVIRONMENTS AND OPTIMIZING DATA SYSTEM** HEALTH

Supervisor: Apostolos Karvelas

Anastasiia Petrovych

AGENDA OVERVIEW

01

PROJECT BACKGROUND

02

PROBLEM STATEMENT

03

FRAMEWORK

04 **METHODOLOGY**

CONCLUSION

VISUAL REPRESENTATION

PIPELINE COMPONENTS

PROJECT BACKGROUND

LHCb experiment

Data centers

Data farms

PROBLEM STATEMENT

How to detect anomalies in servers?

Problems Hardware Failures Software Issues **Resource Constraints Environmental Factors**

Consequences

Data Loss

Downtime

Data Inconsistency

Inefficient use of

resources

FRAMEWORK

1.Define pipeline components

2. Compile to YAML file

B	Getting Started	Pipelines		
<	Pipelines	Filter pipelines		
4	Experiments	Pipeline name		
ź.	Runs	□ → [Tutorial] V2 lightweight Pyth		
-1		Tutorial] DSL - Control struct		
Ŭ	Recurring Runs	□ → [Tutorial] Data passing in pyth		

3. Create pipeline in Kubeflow Central Dashboard

an **open-source** platform for machine learning and **MLOps** on Kubernetes

4. Run recurrent calls

PIPELINE

Fill missing values and choose important feature

Split dataset into train and validation

Ħ

data-preprocessing

Ħ

Ħ

concat-df

create-df

aet-loas

get-hlt2-status

DATA PREPROCESSING

Feature scaling

DATA PREPROCESSING

Fill missing values and choose important feature

Split dataset into train and validation

9

DATA PREPROCESSING

Fill missing values and choose important feature

Split dataset into train and validation

10

DATA PREPROCESSING

Fill missing values and choose important feature

Split dataset into train and validation

11

INPUT

MODEL

OUTPUT

MODEL TRAINING

Sequential model

Reconstructed Image

VAE

TESTING

$$\widehat{y_i} = \frac{\sum (y_i - \hat{y}_i)^2}{n}$$

n: number of observation y_i : the actual value of the i^{th} observation $\widehat{y_i}$: the predicted value of the i^{th} observation

TESTING

 $MSE = \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \hat{y}_i)^2}$

difference between the actual value and the model <u>prediction</u> over the entire data set

TESTING

 $MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$

 $MSE = \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \hat{y}_i)^2}$ n

the average squared difference between the <u>estimated</u> values and the <u>actual</u> value

oss on ata	$L = rac{1}{n}\sum_{i=1}^n y_i - ilde y_i $
	y_i is the original data point.

 $ilde{y}_i$ is the reconstructed data point.

 $|y_i - ilde{y}_i|$ is the absolute difference

Ö	Recurring Runs	
	Status	Trigger
	ENABLED	Every 1

SEND ALERTS

附 Gmail

Anomaly Detection Report

1 message

anastasiia.petrovych@cern.ch <anastasiia.petrovych@cern.ch> To: anastasiyapetrovych25@gmail.com

Dear Colleague,

This is the detected anomaly report for the past day. Please find the details below:

Anomalies detected:

- Node n2011704 has 1 windows with high anomaly scores. - Node n2012503 has 1 windows with high anomaly scores. - Node n2020501 has 1 windows with high anomaly scores. - Node n2020504 has 1 windows with high anomaly scores. - Node n2020901 has 1 windows with high anomaly scores. - Node n2022501 has 2 windows with high anomaly scores. - Node n2022504 has 1 windows with high anomaly scores. - Node n2022901 has 1 windows with high anomaly scores. - Node n2024101 has 1 windows with high anomaly scores. - Node n2024104 has 1 windows with high anomaly scores. - Node n2024304 has 1 windows with high anomaly scores. - Node n2024503 has 2 windows with high anomaly scores. - Node n2040102 has 1 windows with high anomaly scores. - Node n2040104 has 1 windows with high anomaly scores. - Node n2040304 has 1 windows with high anomaly scores. - Node n2040703 has 1 windows with high anomaly scores. - Node n2041501 has 1 windows with high anomaly scores. - Node n2041503 has 1 windows with high anomaly scores. - Node n2044302 has 4 windows with high anomaly scores. - Node n2052504 has 1 windows with high anomaly scores. - Node n2053901 has 3 windows with high anomaly scores. - Node n2054301 has 5 windows with high anomaly scores. - Node n2062502 has 1 windows with high anomaly scores. - Node n2062702 has 3 windows with high anomaly scores. Regards,

LHCb team.

days

CONCLUSION

- Automated the anomaly detection process and increased efficiency
- Improved the accuracy and reliability of the whole pipeline
- Implemented daily monitoring for continuous detection and timely alerts

THANK YOU!

Anastasiia Petrovych

