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Anomaly Detection in Grid Compute Nodes: 

A Machine Learning Approach Leveraging HEP Benchmark Suite

What is Benchmarking ?

• Benchmark Scores: Compare performance 
of systems or system components (e.g. 
smartphones, CPU models)

• Purpose: Identify the best value based on 
your specific needs and tasks

• In Computing: Measure system 
performance using specific predefined tests 
or workloads

• Outcome: Determine the most efficient 
option for your requirements
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CPU Benchmarking on the Worldwide LHC Computing Grid

➢ Purpose:

• Compare different CPU models
(for accounting and financial planning)

➢ HEPScore23:

• Includes 7 workloads from 5 experiments: 
ATLAS, CMS, ALICE, Belle II, LHCb

➢ HEP Benchmark Suite:
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CPU Benchmarking on the Worldwide LHC Computing Grid

• The HEP Benchmark Suite is submitted 
as a standard job to the grid

• Probing the performance of the grid 
servers in production environment

• Results, together with metadata such as 
load, memory usage and power 
consumption are sent back to us

• The collected data can also be used 
to detect misconfigured servers

• Correlation between Load of the server 
and the HEPScore (performance of the 
server) can be used to detect those 
misconfigurations (anomalies)

• This process is done manually right now

• The goal of the project is to automate it

Anomaly Detection in Grid Compute Nodes: 
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Statistics:
Over 200k jobs finished:

- 139 unique sites
- 227 unique CPU Models 
- 28246 unique hosts
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Not All Anomalies Are the Same

➢ Global Clustered Anomalies

• Exhibit similar characteristics
• Grouped closed together
• Located far from trendline

➢ Global Scattered Anomalies

• Differ significantly from normal data
• Spread far apart
• Located far from trendline

For the purposes of this analysis, we focus
only on identifying global clustered
anomalies using machine learning
techniques

Global clustered

Global 
scattered
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Three Types of Clustered Anomalies on the Grid

“Other” type of 
anomaly

➢ ”Underperformance” type of anomalies

• Identified by a cluster of points that fall 
below the general trendline

• Typically, far from the all-sites trendline

➢ ”Overperformance” type of anomalies

• Identified by a cluster of points that fall 
above the general trendline

• Typically, far from the all-sites trendline

➢ ”Other” type of anomalies

• This type of anomaly can be 
characterized by a “flat” area of data 
points (highlighted on the plot) or any 
other trendline which is “unusual” 
comparing to the general trend Underperformance

anomaly cluster
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Anomaly Detection Machine Learning Models

Types of Anomaly Detection Models:

• Z-Score
• K-Nearest Neighbors (k-NN)
• Local Outlier Factor (LOF)
• DBSCAN
• One-Class SVM

• Isolation Forest
• Isolation Forest with Split-selection Criterion (SCiForest)
• Autoencoders
• Principal Component Analysis (PCA)
• T-Distributed Stochastic Neighbor Embedding (t-SNE)

Isolation Forest:

• Effective at detecting global scattered anomalies

• Uses random splits with hyperplanes in the feature space to isolate anomalies

• Generalizes well

• Preliminary results shown on the next slide
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Isolation Forest Preliminary Results

• Effectively detects global scattered anomalies

• Sometimes fails to detect global clustered anomalies

• A lot of False Positives and False Negatives
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Isolation Forest Preliminary Results

Anomaly Detection in Grid Compute Nodes: 
A Machine Learning Approach Leveraging HEP Benchmark Suite

• SCiForest should help with this based on 
the literature review

• Well-suited for detecting both global 
scattered and clustered anomalies

• Utilizes improved split selection with 
hyperplanes to better separate local 
distribution peaks 

• Effectively detects global scattered anomalies

• Sometimes fails to detect global clustered anomalies

• A lot of False Positives and False Negatives
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Next Steps

• Implementation of Isolation Forest with Split-selection Criterion (SCiForest)

• Results validation and different models comparison

• Add labels or anomaly score from the unsupervised learning algorithm to the dataset as

”ground truth”

• Apply a semi-supervised learning algorithm, such as XGBoost Outlier Detection (XGBOD),

on the entire dataset with all features and “ground truth”

• Generate JSON report file with results and save plots with anomalies

Example JSON:

September October
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Thank you
for your attention

@Kacper0199

kacperkozik999@gmail.com
kacper.kamil.kozik@cern.ch

linkedin.com/in/kacper-kozik

Questions?

https://github.com/Kacper0199
mailto:kacperkozik999@gmail.com
mailto:kacper.kamil.kozik@cern.ch
http://linkedin.com/in/kacper-kozik
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