Generative Models for Particle Shower Simulation in Calorimeters for Geant4

Mohammed Touami (EP - SFT)

Supervisors: Piyush Raikwar, Peter McKeown, Anna Zaborowska, Dalila Salamani

Context

Context - Reconstruction

Context - Reconstruction

Context - Reconstruction

Context - Geant4

- Toolkit for the simulation of the passage of particles through matter (Open Source, C++).
- Allows creation of geometries, custom detectors, record particle hits & tracks...
- Its areas of application also include high energy, nuclear and accelerator physics, as well as studies in medical and space science.

Monte Carlo

Monte Carlo

ern Fi:,: cern Openlab

Monte Carlo

More Data = More Accuracy = More Resources

Simulation Cost

Simulation Cost

One quarter of CPU usage!

Calorimeter Cost

One half of CPU usage!

CHEP 2018, M. Rama

Limitations

LHC - 2024

HL LHC - 2029

Even More Resources Needed

HC - 2029

Limitations

Any Alternatives?

23/07/2024

Software Efficiency Enhancement

Software Efficiency Enhancement

Machine Learning

Software Efficiency Enhancement Machine Learning Generative Models

Software Efficiency Enhancement Machine Learning Generative Models Particle Shower Inference

Generative Models

Discriminative Model
 Generative Model

Difference between standard ML classifiers:

- Give the model a standard prior (usually Gaussian)
- Give the model the outputs (classes)
- Model tries to mimic an input that would yield such a class

Gen Al in HEP

Simulated Collision in Detector

Gen Al in HEP

Simulated Collision in Detector

Recorded Scoring Mesh

Gen Al in HEP

def ML4FastSim(particle_(energy,angle), detector): return f(shower|particle_(energy,angle), detector)

def ML4FastSim(particle
(energy, angle), detector):

return f(shower/particle
(energy, angle), detector)

The returned shower (3D Scoring Mesh) is used as final simulation output

Model Limitations

Sparse Data!

Model Limitations

Alternate Data Representation (Point Clouds)

- A substantial increase in shower simulation time in calorimeters.
- More efficient simulations (taking only the necessary information at different abstraction levels).
- Flexible level of physics and experimental bias for each experiment simulation

Thank you!

Any Questions?

