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From Wikipedia, the free encyclopedia

Econophysics is a non-orthodox (in economics) interdisciplinary research field, applying theories and methods originally developed by physicists in
order to solve problems in economics, usually those including uncertainty or stochastic processes and nonlinear dynamics. Some of its application to the
study of financial markets has also been termed statistical finance referring to its roots in statistical physics. Econophysics is closely related to socia

physics.

Basic problem: develop models adopted to practice.
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Stochastic models of price dynamics

Prices of financial assets have a stochastic nature.
Crutial for rational pricing of derivative products issued on it.
The full characterization of a stochastic processs requires the

knowledge of conditional probablities of all orders:
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Fig. 8.1. Empirical pdf for the logarithm of daily price differences of Chevron stock
traded in the New York Stock Exchange in the period 1989 to 1995. The smooth
line is the Gaussian pdf with the same variance calculated from the data.




Chapter 8: examples for GGD

Similarly the famous Black and Scholes formula assumes Gaussian.

Several improvements, generalized Gaussians are available by now.
Some generalizations are based on the followings:

(1) the finiteness or infiniteness of the second and higher moments of the
distribution;
(ii) the nature of stationarity present on a short time scale or asymptotically;
(111) the continuous or discontinuous character of Y (t) — or In Y (¢); and
(iv) the scaling behavior of the stochastic process.

Examples for generalized Gaussian distributions (GGD):
8.1 Levy stable (non-Gaussian) model

8.2 Student’s t distribution
8.3 Mixture of Gaussians
8.4 Truncated Levy flight




Section 8.1: Levy stable model
Proposed by B. Mandelbrot in 1963 for modeling cotton In Y(t).
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The Variation of Certain Speculative Prices
Benoit Mandelbrot

The Journal of Business, Vol. 36, No. 4. (Oct., 1963), pp. 394-419.

Stable URL:
http://links jstor.org/sici?sici=0021-9398%28196310%2936%3A4%3C394%3IATVOCSPY%3E2.0.CO%3B2-L

B. ADDITION OF MORE THAN TWO
STABLE RANDOM VARIABLES

Let the independent variables U, sat-
isfy the condition (PL) with values of a,
B8, v, and & equal for all #. Then, the loga-
rithm of the characteristic function of

Sy=U+Us+...Us+...Ux
is NV times the logarithm of the character-
istic function of U,, and it equals
i 6Nz — Ny|z|*[1 + iB(s/|5]) tan (ax/2)],
so that Sy is stable with the same o and

B as U,, and with parameters § and v
multiplied by N. It readily follows that

The Journal of Business is currently published by The University of Chicago Press

Seconded by Fama (1965)
Stable for convolution
Generalized central limit theorems
Infinite second moment for a < 2.
Infinite first moment for o < 1.
Gaussian is recovered for o = 2.
Top cited, paradigm shifting paper.

w
U, — §and N~V Z (Ua—38)

ne=1

have identical characteristic functions
and thus are identically distributed ran-



Section 8.2: Student’s t distribution
Proposed by P. K. Clark, Econometrica 41 (1973) 135-256

o
P(z) = (1+ szn){nﬂl/z (8.1)

of a stochastic process
xX\/n

U (82)
i+
obtained from independent stochastic variables yq, yo,..., y, and x, each with
normal density, zero mean, and unit variance. Here

¢ Tlin+1)/2]

" Janl(n/2)
When n = 1, P(z) is the Lorentzian distribution. When n — oo, P(z) is the
Gaussian distribution. In general, P(z) has finite moments for k < n. Hence
a stochastic process characterized by a Student’s t-distribution may have
both finite and infinite moments. By varying the control parameter n (which
controls the finiteness of moments of order k), one can approximate with
good accuracy the log price change distribution determined from market
data at a given time horizon [19].

Finite k-th moment for k < n.
Both finite and infinite moments.
Shape not stable.

No scaling relations.

z

(8.3)




Section 8.3: Mixture of Gaussians

Clark interpreted the leptokurtic behavior observed in empirical analyses
as the result of the fact that the trading activity 1s not uniformly distributed
during the trading interval. In his model the second moment of the P [S[€(t)]]
distribution is always finite provided P(€2) has a finite second moment. The
specific form of the distribution depends on the distribution of the directing
process (t). In general, the P[S[CQ(t)]] distributions do not possess scaling
properties.

No scaling relations.
Not very interesting for us.
With sufficiently large number of mixed Gaussians, datasets with
large number of peaks can be described.




Added: Generalized Gaussian Distributions

Parametersy location (real)
« scale (positive, real)
B shape (positive, real)
Support x € (—00;+400)
PDF A

2aT'(1/B)

o

Co WK = = O
D

o~ (lz—pl/a)f

I' denotes the gamma function

_ 1B
Iy 7(1/5,“” “\)

2 2T (1/B) a

where /3 is a shape parameter, ¢ is a scale
parameter and -y is the unnormalized incomplete

lower gamma function.

Parameter 3 similar to Levy index of stability a for 0 < B < 2,
but 2 < Bis allowed,

in this case it is not a Fourier-transform of a positive definite
probability density.

See: https://en.wikipedia.org/wiki/Generalized normal distribution



https://en.wikipedia.org/wiki/Generalized_normal_distribution

Asymmetric Generalized Gaussian Ds

Parametersf location (real)
o scale (positive, real)
x shape (real)
z € (—00,é+a/k)ifk >0
z € (—o00,00)if k=0
ze(l+a/k+oo)ifk <0

d(y)

a— Kz —§)

, Where

=t if k=0

a3
¢ is the standard normal pdf

- {—%log[l— n(ma_ﬂ} ifk #0

Parameter « similar to Levy asymmetry parameter g but -1 < <1,

But in this case support is finite if k is non-vanishing, while
Levy asymmetric has finite support only if Levy p = + 1,

Only location, scale and asymmetry but no exponent for the tails.

See: https://en.wikipedia.org/wiki/Generalized normal distribution



https://en.wikipedia.org/wiki/Generalized_normal_distribution

Section 8.4: Truncated Levy Flights (TLF)

TLF distribution is defined by

Not stable for convolution.
It has finite means and variances:
asymptotically Gaussian.

0 x>/
P(x) = {cPL(x) —/ <x<! ,
But how quickly?

0 x < —/

How quickly will it converge? To answer this question, we consider the
quantity S, = > i_; x;, where x; is a truncated Levy process, and (x;x;) =
const o;;. The distribution P(S,) well approximates P;(x) in the limit n — 1,
while P(S,) = Pg(S,) in the limit n — oo. Hence there exists a crossover
value of n,ny«, such that (Fig. 8.3)

P(S,) ~ {PL(SH) when n < ny
"\ Po(S,) when n> ny

where Ps(S,) is a Gaussian distribution. The crossover value ny is given by

(8.5)

ny ~ AL, (8.6)

Very interesting.
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Section 8.4: Truncated Levy Flights (TLF)
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Fig. 8.4. Probability of return to the origin of S, as a function of n for « = 1.5 and
¢ = 100. The simulations (circles), obtained with 5 X 104 realizations, are compared

with the Levy regime (solid line) and the asymptotic Gaussian regime calculated for
/ = 100 (dotted line). Adapted from [114].

[114] R. N. Mantegna and H. N. Stanley, Physics Investigation of Financial Markets In: The physics of
complex systems. Book issued by I0S Press, (1997) pp. 473-489.
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Section 8.4: Truncated Levy Flights (TLF)

Transition from Levy to Gaussian regime. From [114].

Very interesting: effect of truncation
dominant for long term.
Similar effects for St. Peterburg

O Paradox (for next time).
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Fig. 8.5. Semi-logarithmic scaled plot of the probability distributions of the TLF

process characterized by o = 1.5 and Z = 100 for n = 1, 10, 100, and 1,000. For low

values of n (n = 1 (circles) and 10 (squares)) the central part of the distributions is

well described by the Lévy stable symmetrical profile associated with « = 1.5 and ,
y = 1 (solid line). For large values of n (n = 1,000 (inverted triangles)), the TLF

process has already reached the Gaussian regime and the distribution is essentially

Gaussian (dotted line). Adapted from [114].

[114] R. N. Mantegna and H. N. Stanley, Physics Investigation of Financial Markets In: The physics of
complex systems. Book issued by |0S Press, (1997) pp. 473-489.
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