
Webinar:

Adding and managing
GPUs on Kubernetes
Diana Gaponcic, IT-CD-PI

Introduction

How to create a GPU cluster

How to create a GPU cluster

1. By default 2 nodes are deployed: the master and the default
worker node

How to create a GPU cluster

1. By default 2 nodes are deployed: the master and the default
worker node

2. No GPU yet
a. the cluster is configured to manage GPUs, but we don’t get a

GPU by default

GPU flavors

Consult https://clouddocs.web.cern.ch/gpu_overview.html for an
up-to-date list of GPU flavors

https://clouddocs.web.cern.ch/gpu_overview.html

Add a GPU node

NVIDIA GPU operator

9

nvidia-driver-daemonset
Loads the drivers on the node

nvidia-container-toolkit-ctr
The toolkit includes a container runtime library

and utilities to automatically configure containers to
leverage NVIDIA GPUs.

nvidia-dcgm-exporter + nvidia-operator-validator
NVIDIA Data Center GPU Manager (DCGM) is a

suite of tools for managing and monitoring NVIDIA
datacenter GPUs. It exposes GPU metrics exporter
for Prometheus leveraging NVIDIA DCGM.

nvidia-device-plugin-daemonset

Allows to automatically:
1. Expose the number of GPUs

on each nodes of your cluster
2. Keep track of the health of

your GPUs
3. Run GPU enabled containers

in your Kubernetes cluster.

This is what allows NVIDIA GPUs to
be requested by a container using
the nvidia.com/gpu resource type.

nvidia-cuda-validator
Validates that the stack

installation worked

Node feature discovery

Node feature discovery

Disclaimer:

We will have automatic tainting in the next release

Tainting

14

Example Use Cases
(very different GPU consumption behaviour)

15

Example Use Cases
(very different GPU consumption behaviour)

Badly coded simulation job:

● Low average GPU usage (CPU
dependant workload)

● Needs 10 GiB VRAM (8 + 2 dynamic)
● Long running process

16

Example Use Cases
(very different GPU consumption behaviour)

An inference service which is occasionally
triggered by outside events:

● Spiky and unpredictable execution
● Mostly sits idle
● Saturates the GPU cores
● Max 10 GiB VRAM (2 + 8 dynamic)

Badly coded simulation job:

● Low average GPU usage (CPU
dependant workload)

● Needs 10 GiB VRAM (8 + 2 dynamic)
● Long running process

17

Example Use Cases
(very different GPU consumption behaviour)

An inference service which is occasionally
triggered by outside events:

● Spiky and unpredictable execution
● Mostly sits idle
● Saturates the GPU cores
● Max 10 GiB VRAM (2 + 8 dynamic)

Never know what to expect from a notebook
user:

● Potential memory leaks
● Poorly considered batch size
● GPU memory locked by an idle notebook

Badly coded simulation job:

● Low average GPU usage (CPU
dependant workload)

● Needs 10 GiB VRAM (8 + 2 dynamic)
● Long running process

* All use cases were run on a
CERN Kubernetes cluster with
1 NVIDIA A100 40GB GPU

18

Onboard Use Case 1

Badly coded simulation job:

● Low average GPU usage
(CPU dependant workload)

● Needs 10 GiB VRAM (8 + 2
dynamic)

● Long running process

● GPU underutilized
● Steady memory utilization ~ 20%

● Some use cases cannot fully utilize a GPU => idle time
● Dedicated GPUs => small/limited GPU offering

Dedicated GPU drawbacks

● Some use cases cannot fully utilize a GPU => idle time
● Dedicated GPUs => small/limited GPU offering

Dedicated GPU drawbacks

How to improve?

GPU Sharing

1. Time-slicing

● The scheduler gives an equal share of time to all GPU processes
and alternates them in a round-robin fashion.

● The memory is shared between the processes
● The compute resources are assigned to one process at a time

Time-slicing

23

values.yaml in NVIDIA gpu operator Helm
chart
...
devicePlugin:
 config:
 name: nvidia-time-slicing-config

$ cat nvidia-time-slicing-config.yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: nvidia-time-slicing-config
 namespace: kube-system
data:
 slice-4: |-
 version: v1
 sharing:
 timeSlicing:
 renameByDefault: true
 failRequestsGreaterThanOne: true
 resources:
 - name: nvidia.com/gpu
 replicas: 4

apiVersion: v1
kind: Pod
metadata:
 name: tf-gpu
spec:
 containers:
 - name: tf
 image:
tensorflow/tensorflow:latest-gpu
 command: ["sleep", "inf"]
 resources:
 limits:
 nvidia.com/gpu.shared: 1

24

● GPU underutilized
● Steady memory

utilization ~ 20%

Use case
1

24

Use case 1

25

● GPU underutilized
● Steady memory

utilization ~ 20%

Use case
1

25

● Improved GPU utilization
● Better memory consumption (~ 50 %)

Use case 1

Use cases
1 & 2

* Time-Slicing GPU
Sharing

26

Use cases
1 & 2 & 3

* Time-Slicing GPU
Sharing

GPU utilization 100%

… Perfect, right?

No.

Use case 3 used all the
memory, and starved
the other 2 processes.

Advantages Disadvantages

Works on a wide range of NVIDIA
architectures

No process/memory isolation

An easy way to set up GPU
concurrency

No ability to set priorities

An unlimited number of
partitions

Inappropriate for latency-sensitive
applications (ex: desktop
rendering for CAD workloads)

Time-Slicing

GPU Sharing

2. Multi Instance GPU

Multi Instance GPU
Multi Instance GPU (MIG) can partition the GPU into up to seven
instances, each fully isolated with its own high-bandwidth memory,
cache, and compute cores.

MIG Profiles on A100

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

NVIDIA MIG provides multiple strategies for
allowing users to reference the graphic card
resources:
● mixed: Different resource types are enumerated for every MIG

device available. Ex: nvidia.com/mig-3g.20gb
● single: MIG devices are enumerated as nvidia.com/gpu, and map

to the MIG devices available on that node, instead of the full
GPUs.

● none: No distinction between GPUs with MIG or without. The
available devices are listed as nvidia.com/gpu.

32

values.yaml in NVIDIA gpu operator
Helm chart
...
mig:
 strategy: mixed
migManager:
 config:
 name: nvidia-mig-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: nvidia-mig-config
data:
 config.yaml: |
 version: v1
 mig-configs:
 # A100-40GB
 3g.20gb-2x2g.10gb:
 - devices: all
 mig-enabled: true
 mig-devices:
 "2g.10gb": 2
 "3g.20gb": 1

apiVersion: v1
kind: Pod
metadata:
 name: tf-gpu
spec:
 containers:
 - name: tf
 image:
tensorflow/tensorflow:latest-gpu
 command: ["sleep", "inf"]
 resources:
 limits:
 nvidia.com/mig-3g.20gb: 1

33

Every process:
● Is isolated
● Saturates own resources
● Cannot influence other

processes

… Perfect, right?

Yes.

Use case 3 starved itself,
use cases 1 & 2 continued
running without issues!

-> Use Case 1
-> Use Case 2
-> Use Case 3

* MIG GPU Sharing

35

Advantages Disadvantages

Hardware isolation allows processes to
run securely in parallel and not influence
each other

Only available for Ampere, Hopper, and
Blackwell architecture

Monitoring and telemetry data available
at partition level

Reconfiguring the partition layout
requires all running processes to be
evicted

Allows partitioning based on use cases,
making the solution flexible

* Potential loss of available memory
depending on chosen profile layout

Hardware level sharing - MIG

* Not a risk if the partitioning layout is chosen in an informed way after careful
consideration.

GPU sharing tradeoffs

Benchmarked script:
● Simulation script that generates collision events. Find more
● Built with Xsuite (Suite of python packages for multiparticle

simulations for particle accelerators)
● Very heavy on GPU usage
● Low on memory accesses
● Low on CPU-GPU communication

Environment:
● NVIDIA A100 40GB PCIe GPU
● Kubernetes version 1.22
● Cuda version utilized: 11.6
● Driver Version: 470.129.06

https://kubernetes.docs.cern.ch/blog/2023/03/20/efficient-access-to-shared-gpu-resources-part-3/#compute-intensive-particle-simulations

Time-slicing Performance Analysis

Number of
particles

Shared x1
[seconds]

Expected Shared x2
= Shared x1 * 2
[seconds]

Actual Shared
x2 [seconds]

Loss [%]

15 000 000 77.12 154.24 212.71 37.90

20 000 000 99.91 199.82 276.23 38.23

30 000 000 152.61 305.22 423.08 38.61

The GPU context switching caused a ~38% performance loss

There is no additional performance loss when sharing the GPU between
more processes (4, 8, and even more).

Number
of
particles

Shared x2
[seconds]

Shared x4
[seconds]

Loss [%]

15 000
000

212.71 421.55 0

20 000
000

276.23 546.19 0

30 000
000

423.08 838.55 0

Number of
particles

Shared x4
[seconds]

Shared x8
[seconds]

Loss [%]

15 000 000 421.55 838.22 0

20 000 000 546.19 1087.99 0

30 000 000 838.55 1672.95 0

Time-slicing Performance Analysis

MIG Performance Analysis

MIG Performance Analysis

The theoretical loss of 9.25% is seen experimentally.

Number of
particles

Whole GPU,
no MIG
[seconds]

Whole GPU,
with MIG
(7g.40gb)
[seconds]

Loss [%]

5 000 000 26.365 28.732 8.97 %

10 000 000 51.135 55.930 9.37 %

15 000 000 76.374 83.184 8.91 %

MIG Performance Analysis
Number of particles 7g.40gb [s] 3g.20gb [s] 2g.10gb [s] 1g.5gb [s]

5 000 000 28.732 62.268 92.394 182.32

10 000 000 55.930 122.864 183.01 362.10

15 000 000 83.184 183.688 273.7 542.3

Number of particles 3g.20gb / 7g.40gb 2g.10gb / 3g.20gb 1g.5gb / 2g.10gb

5 000 000 2.16 1.48 1.97

10 000 000 2.19 1.48 1.97

15 000 000 2.20 1.48 1.98

ideal scale 7/3 = 2.33 3/2 = 1.5 2/1 = 2

The scaling between partitions converges to ideal values.

Category Examples Time slicing MIG

Latency sensitive CAD, Engineering Applications

Interactive Notebooks ¹

Performance intensive Simulation

Low priority CI Runners

¹ Independent workloads can trigger OOM errors between each other. Needs an
external mechanism to control memory usage (similar to kubelet CPU memory
checks)

GPU Sharing Use Cases

Monitoring

https://grafana.com/grafana/dashboards/18288-nvidia-gpu/

https://grafana.com/grafana/dashboards/18288-nvidia-gpu/

https://docs.nvidia.com/datacenter/dcgm/2.4/dcgm-api/dcgm-api-field-ids.html
46

Profiling the A100 compute pipeline utilization

dcgm-metrics.csv
...

DCGM_FI_PROF_PIPE_TENSOR_ACTIVE, gauge, Ratio of cycles the tensor (HMMA) pipe is active (in %).
DCGM_FI_PROF_PIPE_FP64_ACTIVE, gauge, Ratio of cycles the fp64 pipes are active (in %).
DCGM_FI_PROF_PIPE_FP32_ACTIVE, gauge, Ratio of cycles the fp32 pipes are active (in %).
DCGM_FI_PROF_PIPE_FP16_ACTIVE, gauge, Ratio of cycles the fp16 pipes are active (in %).

https://docs.nvidia.com/datacenter/dcgm/2.4/dcgm-api/dcgm-api-field-ids.html

GPU access using
Kubeflow

Find more:
● https://ml.docs.cern.ch/
● https://ml.cern.ch/

https://ml.docs.cern.ch/
https://ml.cern.ch/

Conclusions
1. It is easy to create a cluster with GPU nodes

a. The user is abstracted away from having to set any drivers

2. GPU sharing is useful to improve the overall GPU utilization, but it
comes with performance tradeoffs
a. Sharing helps us to offer GPUs to more users
b. For use cases that can fully utilize the GPU, we need to consider

allocating dedicated GPUs

3. Monitoring is very important
a. The current infrastructure is flexible enough to cater for various

use cases

4. For ML workloads consider using Kubeflow

Thank you!

