Webinar:

Adding and managing
GPUs on Kubernetes

Diana Gaponcic, IT-CD-PI

Introduction

How to create a GPU cluster

$ openstack coe cluster create digaponc-gpu-004 --merge-labels --labels nvidia_gpu_enabled=true

How to create a GPU cluster

$ kubectl get no
NAME STATUS ROLES AGE VERSION

digaponc-gpu-004-6zombv4ghhxi-master-0 Ready master 17d v1.30.2
digaponc-gpu-004-6zombv4ghhxi-node-0 Ready <none> 17d v1.30.2

1. By default 2 nodes are deployed: the master and the default
worker node

How to create a GPU cluster

$ kubectl get no
NAME STATUS ROLES AGE VERSION

digaponc-gpu-004-6zombv4ghhxi-master-0 Ready master 17d v1.30.2
digaponc-gpu-004-6zombv4ghhxi-node-0 Ready <none> 17d v1.30.2

1. By default 2 nodes are deployed: the master and the default
worker node

2. No GPU yet
a. the cluster is configured to manage GPUs, but we don't get a

GPU by default

GPU flavors

Flavor Name GPU RAM vCPUs Disk Ephemeral Comments
gl.xlarge V100 16 GB 4 56 GB 96 GB [*], deprecated
g1.4xlarge V100 (4x) 64 GB 16 80 GB 528 GB]

g2.xlarge T4 16 GB 4 64 GB 192 GB [*], deprecated
g2.5xlarge T4 168 GB 28 160 GB 1200 GB "]

g3.xlarge V100S 16 GB 4 64 GB 192 GB]

g3.4xlarge V100S (4x) 64 GB 16 128 GB 896 GB]

g4.p1.40g A100 (1x) 120 GB 16 600 GB 2 [*1], AMD CPUs
g4.p2.40g A100 (2x) 240 GB 32 1200 GB - [*1], AMD CPUs
g4.p4.40g A100 (4x) 480 GB 64 2400 GB - [*1], AMD CPUs

Consult https://clouddocs.web.cern.ch/gpu overview.html for an

up-to-date list of GPU flavors

https://clouddocs.web.cern.ch/gpu_overview.html

Add a GPU node

$ openstack coe nodegroup create digaponc-gpu-004 gpu-t4 --flavor g2.5xlarge --node-count 1

$ kubectl get no
NAME STATUS ROLES VERSION
digaponc-gpu-004-6zombv4ghhxi-master-0 Ready master vl.30.2

digaponc-gpu-004-6zombv4ghhxi-node-0 Ready <none> vl.30.2
digaponc-gpu-004-gpu-t4-rr5badjdpuyc-node-0 Ready <none> v1.30.2

NVIDIA GPU operator

$ kubectl get pod -n kube-system | grep nvidia
nvidia-container-toolkit-daemonset-8hfwn Running
nvidia-cuda-validator-dlpmt Completed
nvidia-dcgm-exporter-1m4kn Running
nvidia-device-plugin-daemonset-9w9xk Running
nvidia-driver-daemonset-sqs5c Running
nvidia-operator-validator-7scl5 Running

nvidia-driver-daemonset
Loads the drivers on the node

nvidia-container-toolkit-ctr

The toolkit includes a container runtime library
and utilities to automatically configure containers to
leverage NVIDIA GPUs.

nvidia-dcgm-exporter + nvidia-operator-validator

NVIDIA Data Center GPU Manager (DCGM) is a
suite of tools for managing and monitoring NVIDIA
datacenter GPUs. It exposes GPU metrics exporter
for Prometheus leveraging NVIDIA DCGM.

nvidia-device-plugin-daemonset

Allows to automatically:
1. Expose the number of GPUs
on each nodes of your cluster
2. Keep track of the health of
your GPUs
3. Run GPU enabled containers
in your Kubernetes cluster.

This is what allows NVIDIA GPUs to
be requested by a container using
the nvidia.com/gpu resource type.

nvidia-cuda-validator
Validates that the stack
installation worked

Node feature discovery

$ kubectl get pod -n kube-system | grep node-feature-discovery
cern-magnum-node-feature-discovery-gc-7985chd94b-q499t
cern-magnum-node-feature-discovery-master-7bbccf9b68-f jpp8
cern-magnum-node-feature-discovery-worker-5qjzq
cern-magnum-node-feature-discovery-worker-ghbrc

1/1
1/1
IVA
1/1

Running
Running
Running
Running

Node feature discovery

local. feature:

$ kubectl get pod -n kuk
cern-magnum-node-feature
cern-magnum-node-feature
cern-magnum-node-feature
cern-magnum-node-feature

elements:
nvidia.
nvidia.
nvidia.
nvidia.
nvidia.

nvidia

nvidia.

nvidia

nvidia.

nvidia

nvidia.
nvidia.
nvidia.
nvidia.
nvidia.
nvidia.
nvidia.
nvidia.

nvidia

nvidia

nvidia

nvidia

com/cuda.
com/cuda.
com/cuda.
com/cuda.
com/cuda.
.com/cuda.
(olo]) VA -
.com/cuda.
com/cuda.
.com/cuda.
com/cuda.
com/cuda.
.timestamp: "1728992460"

com/gfd
com/gpu.
com/gpu.
com/gpu.
com/gpu.
com/gpu.

.com/gpu.
nvidia.

com/gpu.

.com/gpu.
nvidia.

com/gpu.

.com/gpu.
nvidia.

com/mig.

.com/mig.
nvidia.
nvidia.

com/mps.
com/vgpu

driver-version.full: 550.54.15
driver-version.major: "550"
driver-version.minor: "54"
driver-version.revision: "15"
driver.major: "550"
driver.minor: "54"
driver.rev: "15"
runtime-version.full: "12.4"
runtime-version.major: "12"
runtime-version.minor: "“4"
runtime.major: "12"
runtime.minor: "4"

compute.major: “7"
compute.minor: "5"
count: "1*"

family: turing
machine: OpenStack-Compute
memory: "15360"

mode: compute

product: Tesla-T4
replicas: "1"
sharing-strategy: none
capable: "false"
strategy: mixed
capable: "false"
.present: "false"

Allocatable:

nvidia.com/gpu: 1

root@tf-gpu:/# nvidia-smi

apiVersion: Tue Oct 29 14:09:00 2024
kind: | NVIDIA-SMI 550.54.15 Driver Version . CUDA Version
metadata: S s S R 5
Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
name: Pwr:Usage/Cap Memory-Usage | GPU-Util Compute M. |
MIG M. |
spec: |
3 . 00000000:00:07. 0 |
containers: | oMiB / Default |
= hame:
image:
command: [‘ , inf'] | Processes:
~ C GPU Me
resources: . 1; Usagepmry

limits:
nvidia.com/gpu:

Tainting

Taint Nodes
With kubernetes templates 1.24+, the gpu-operator helm chart does not taint GPU nodes which will allow all workloads to
run in this nodes. We suggest to taint the nodes explicitly by adding the following taint to the GPU nodegroups:

node-role.kubernetes.io/gpu=true:NoSchedule

Disclaimer:

We will have automatic tainting in the next release

9

Example Use Cases
(very different GPU consumption behaviour)

Example Use Cases
(very different GPU consumption behaviour)

Badly coded simulation job:

Low average GPU usage (CPU
dependant workload)

e Needs10 GiB VRAM (8 + 2 dynamic)

Long running process

Example Use Cases
(very different GPU consumption behaviour)

Badly coded simulation job:

Low average GPU usage (CPU
dependant workload)

e Needs10 GiB VRAM (8 + 2 dynamic)

Long running process

An inference service which is occasionally
triggered by outside events:

Spiky and unpredictable execution
Mostly sits idle

Saturates the GPU cores

Max 10 GiB VRAM (2 + 8 dynamic)

Example Use Cases
(very different GPU consumption behaviour)

Badly coded simulation job:

Never know what to expect from a notebook
user:

Low average GPU usage (CPU
dependant workload)
Needs 10 GiB VRAM (8 + 2 dynamic)
Long running process

e Potential memory leaks

Poorly considered batch size
GPU memory locked by an idle notebook

An inference service which is occasionally
triggered by outside events:

Spiky and unpredictable execution
Mostly sits idle

Saturates the GPU cores
Max 10 GiB VRAM (2 + 8 dynamic)

* All use cases were run on a
CERN Kubernetes cluster with
1 NVIDIA A100 40GB GPU

Onboard Use Case 1

Badly coded simulation job:

Low average GPU usage
(CPU dependant workload)
e Needs10 GiB VRAM (8 +2
dynamic)

Long running process

e GPU underutilized
e Steady memory utilization ~ 20%

GPU Utilization

Memory Utilization

Dedicated GPU drawbacks

e Some use cases cannot fully utilize a GPU => idle time
e Dedicated GPUs => small/limited GPU offering

Dedicated GPU drawbacks

e Some use cases cannot fully utilize a GPU => idle time
e Dedicated GPUs => small/limited GPU offering

How to improve?

GPU Sharing

1. Time-slicing

Time-slicing

e The scheduler gives an equal share of time to all GPU processes
and alternates them in a round-robin fashion.

e The memory is shared between the processes

e The compute resources are assignhed to one process at a time

T T2 T3 T4 T T2 T3 T4 T T2

Time

v

time
slice

GPU

Compute

Memory used by Memory used by Memory used by Memory used by
Process 1 Process 2 Process 3 Process 4

apiVersion:
Allocatable: kind:
—_— _ _ metadata:
nvidia.com/gpu: 1 dev1c§P1ugln: name:
conflg: spec:
name: .
containers:
- name:
image:
apiVersion:
kind: command: ["sleep", "inf"]
metadata: resources:
name: limits: __ 1
namespace: ' nvidia.com/gpu.shared: 1,
data: 0 ==
slice-4: |-
version: vi1 +
sharing:
timeSlicing:
renameByDefault: true Allocatable:
failRequestsGreaterThanOne: true
Fasoirads — — — — — - -
resources: | nvidia.com/gpu: 0
| - name: nvidia.com/gpu qw% chEthﬁed_ﬂ
| replicas: 4 | ______

Use case 1

e GPU underutilized
e Steady memory
utilization ~ 20%

GPU Utilization

Use cases
1&2

Use case 1

* Time-Slicing GPU
Sharing

Memory Utllization

e GPU underutilized

Steady memory
utilization ~ 20% Improved GPU utilization

Better memory consumption (~ 50 %)

Use cases
1&2&3

* Time-Slicing GPU
Sharing

GPU Utilization

Memory Utilization

GPU utilization 100%

... Perfect, right?

No.

Use case 3 used all the
memory, and starved
the other 2 processes.

drowning

Such a
beautiful

Time-Slicing

Advantages Disadvantages

Works on a wide range of NVIDIA No process/memory isolation
architectures

An easy way to set up GPU No ability to set priorities
concurrency

An unlimited number of Inappropriate for latency-sensitive
partitions applications (ex: desktop

rendering for CAD workloads)

GPU Sharing

2. Multi Instance GPU

Multi Instance GPU

Multi Instance GPU (MIG) can partition the GPU into up to seven
instances, each fully isolated with its own high-bandwidth memory,
cache, and compute cores.

7g.40gb 1 x 7g.40gb
or

2 x 3g.20gb
or

3 x 2g.10gb
or

7 x 1g.5gb

MIG Profiles on A100

CE/RW
.
S,

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

NVIDIA MIG provides multiple strategies for
allowing users to reference the graphic card
resources:

e mixed: Different resource types are enumerated for every MIG
device available. Ex: nvidia.com/mig-3g.20gb

e single: MIG devices are enumerated as nvidia.com/gpu, and map
to the MIG devices available on that node, instead of the full
GPUs.

e none: No distinction between GPUs with MIG or without. The
available devices are listed as nvidia.com/gpu.

apiVersion:
Allocatable: ~ } ... ﬁ::g&ata:
—> [M19:] | name:
nvidia.com/gpu: 1 strategy: mixed spec:
migManager containers:
config: _ name:
name: image:
zg;\é?rsmn. command: ["sleep", "inf"]
y resources:
metadata: limits:
name: | nvidia.com/mig-3g.20gb: 1]
data: === — =
config.yaml: |
version: vi1 T
mig-configs:
A100-40GB
[3g.26gb-2x2g.16gb: | Allocatable:
- devices: all |
| mig-enabled: true | nvidia.com/gpu: 0
mig-devices: | |nvidia.com/mig-29.10gb: 2 |
“2g.10gb": 2 | |nvidia.com/mig-3g.20gb: 1 |
| "3¢g.20gb": 1/ LLEmEm—=—=——=———

S

kubectl label nodes <node-name> nvidia.com/mig.config=3g.20gb-2x2g.10gb

GPU Utllization

Every process:

® |sisolated

® Saturates own resources

e Cannot influence other
processes

-> Use Case 1
-> Use Case 2
-> Use Case 3

* MIG GPU Sharing

... Perfect, right?

Memory Utilization

Use case 3 starved itself,
use cases 1 & 2 continued
running without issues!

‘ AAAH!I
AAAAHH!

Hardware level sharing - MIG

Advantages Disadvantages

Hardware isolation allows processes to Only available for Ampere, Hopper, and
run securely in parallel and not influence Blackwell architecture

each other

Monitoring and telemetry data available Reconfiguring the partition layout

at partition level requires all running processes to be
evicted

Allows partitioning based on use cases, * Potential loss of available memory

making the solution flexible depending on chosen profile layout

* Not a risk if the partitioning layout is chosen in an informed way after careful

consideration.
35

9

GPU sharing tradeoffs

Benchmarked script:

e Simulation script that generates collision events. Eind more

e Built with Xsuite (Suite of python packages for multiparticle
simulations for particle accelerators)

e \Very heavy on GPU usage

e Low on memory accesses

e Lowon CPU-GPU communication

Environment;:

e NVIDIA AIOO 40GB PCle GPU
e Kubernetes version 1.22

e Cuda version utilized: 11.6

e Driver Version: 470.129.06

https://kubernetes.docs.cern.ch/blog/2023/03/20/efficient-access-to-shared-gpu-resources-part-3/#compute-intensive-particle-simulations

Time-slicing Performance Analysis

Number of Shared x1 Expected Shared x2 | Actual Shared | Loss [%]
particles [seconds] = Shared x1*2 X2 [seconds]

[seconds]
15 000 000 7712 154.24 212.71 37.90
20 000 000 99.91 199.82 276.23 38.23
30 000 000 152.61 305.22 423.08 38.61

The GPU context switching caused a ~38% performance loss

Time-slicing Performance Analysis

Number Shared x2 | Shared x4 | Loss [%]

of [seconds] [seconds]

particles Number of | Shared x4 | Shared x8 | Loss [%]
particles [seconds] | [seconds]

15 000 212.71 421.55 0

000 15 000 000 | 42155 838.22 0

20 000 276.23 546.19 0 20 000 000 | 546.19 1087.99 0

000
30 000 000 | 838.55 1672.95 0

30 000 423.08 838.55 0

000

There is no additional performance loss when sharing the GPU between
More processes (4, 8, and even more).

)

MIG Performance Analysis

6912 CUDA

Cores
whole GPU ' 108 Streaming
No MIG > Multiprocessors ||
432 Tensor
—>
Cores
9.25% Loss
.| 6272 CUDA
v g Cores
whole GPU ;
MIG enabled ||, 20 Streaming
(79.40gb) "|Multiprocessors
392 Tensor
Cores

MIG Performance Analysis

Number of Whole GPU, Whole GPU, Loss [%]
particles no MIG with MIG
[seconds] (7g9.40gb)
[seconds]
5000 000 26.365 28.732 8.97 %
10 000 000 51135 55.930 9.37 %
15 000 000 76.374 83.184 8.91 %

The theoretical loss of 9.25% is seen experimentally.

MIG Performance Analysis
Number of particles 79.40gb [s] [39.20gb [s] [29.10gb [s] |19.5gb [s]
5000 000 28.732 62.268 92.394 182.32
10 OO0 000 55.930 122.864 183.01 362.10
15 000 000 83.184 183.688 273.7 5423

Number of particles |39.20gb /7g9.40gb |29.10gb /3g9.20gb |1g.5gb /2g9.10gb
5 000 000 2.16 1.48 1.97

10 000 000 219 1.48 1.97

15 000 000 2.20 1.48 1.98

ideal scale 7/3 =233 3/2=15 2/1=2

The scaling between partitions converges to ideal values.

GPU Sharing Use Cases

Category Examples Time slicing MIG
Latency sensitive CAD, Engineering Applications
Interactive Notebooks 1

Performance intensive Simulation

Low priority Cl Runners

< e < M
LK L L

' Independent workloads can trigger OOM errors between each other. Needs an
external mechanism to control memory usage (similar to kubelet CPU memory
checks)

Monitoring

88 General / NvidiaGPU ¢ <8

GPU Utilization GPU Memory Utilization GPU Utilization Tensor Core Utilization

s 7/

#GPUs / MIGs

Memory Utilization Fan Speed
NVIDIA A100-PCIE-40GB

#Timeslicing

gpu.shared

GPU Temperature Power Usage

PCle Tx/Rx Cycles Memory Interface

8-nvidia-

https://grafana.com/grafana/dashboards/18288-nvidia-gpu/

DCGM_FI_PROF_PIPE_TENSOR_ACTIVE, gauge, Ratio of cycles the tensor (HMMA) pipe is active (in %).
DCGM_FI_PROF_PIPE_FP64_ACTIVE, gauge, Ratio of cycles the fp64 pipes are active (in %).
DCGM_FI_PROF_PIPE_FP32_ACTIVE, gauge, Ratio of cycles the fp32 pipes are active (in %).
DCGM_FI_PROF_PIPE_FP16_ACTIVE, gauge, Ratio of cycles the fp16 pipes are active (in %).

Core Utilization

gitlab-runners-a100-vwh6b6ynnbto-node-0-gpul-tensor
gitlab-runners-a100-vwh6b6ynnbto-node-0-gpu0-fp64
gitlab-runners-a100-vwh6b6ynnbto-node-0-gpu0-fp32

gitlab-runners-a100-vwh6b6ynnbto-node-0-gpu0-fp16

Profiling the A100 compute pipeline utilization

https://docs.nvidia.com/datacenter/dcam/2.4/dcam-api/dcgm-api-field-ids.html

https://docs.nvidia.com/datacenter/dcgm/2.4/dcgm-api/dcgm-api-field-ids.html

GPU access using
Kubeflow

< New notebook .
Find more:
‘ ® https://ml.docs.cern.ch/

s—_

wa 1 2
® https://ml.cern.ch/

JupyterLab VisualStudio Code RStudio
An interactive development A lightweight but powerful An integrated development
environment for notebooks, source code editor, redefined environment for R, a
code, and data. Ideal for and optimized for building and programming language for
prototyping and debugging modern web and statistical computing and
experimentation cloud applications graphics
Custom Notebook v
CPU/RAM @
Minimum CPU Minimum Memory Gi
0.5 S 1 S

v Advanced Options

GPUs

VWV GPU Vendor
NVIDIA GPU 10GB

|'- Number of GPUs
il ‘

l1

https://ml.docs.cern.ch/
https://ml.cern.ch/

Conclusions

1. Itis easy to create a cluster with GPU nodes
a. The user is abstracted away from having to set any drivers

2. GPU sharing is useful to improve the overall GPU utilization, but it
comes with performance tradeoffs

a. Sharing helps us to offer GPUs to more users

b. For use cases that can fully utilize the GPU, we need to consider
allocating dedicated GPUs

3. Monitoring is very important

a. The current infrastructure is flexible enough to cater for various
use cases

4. For ML workloads consider using Kubeflow

Thank you!

