
Runtime security for your
Kubernetes clusters

Jack Munday / IT-CD-PI
November 14th, 2024

Runtime security for your Kubernetes clusters

Kubernetes is not secure by default

Threats can occur at many different levels.
✱ Container

Over-privileged, privilege escalation, image vulnerabilities…

✱ Host
Compromised host, Resource abuse in multi-tenant envs…

✱ Internal & Perimeter Networking
Man-in-Middle, DOS, Lateral movement between pods…

✱ Cluster
Unauthorised access, credential theft …

Each should be tackled independently to
avoid large shifts in environments and
make the process less overwhelming.

Runtime security for your Kubernetes clusters

Kubernetes is not secure by default

Threats can occur at many different levels.
✱ Container

Over-privileged, privilege escalation, image vulnerabilities…

✱ Host
Compromised host, Resource abuse in multi-tenant envs…

✱ Internal & Perimeter Networking
Man-in-Middle, DOS, Lateral movement between pods…

✱ Cluster
Unauthorised access, credential theft …

Each should be tackled independently to
avoid large shifts in environments and
make the process less overwhelming.

Runtime security for your Kubernetes clusters

Runtime security for your Kubernetes clusters

Getting Started

Runtime security for your Kubernetes clusters

Building your docker images

Avoid packaging unrequired tooling into
containers using multi-stage builds.
✱ Scratch for compiled languages.
✱ Distroless for interpreted languages.

Removing a shell limits an attackers ability
to use your container for anything other
than its intended purpose.

Using multistage builds in this way will
typically ensure your images are layered
appropriately and can also reduce the
number of vulnerabilities.
https://kubernetes.docs.cern.ch/docs/containers/base-images/

Runtime security for your Kubernetes clusters

Security Contexts can then be used to restrict
adding tooling to containers
Ensure that (if compromised) additional
tooling can not be added into a container.
Permissions can be restricted using
Security Contexts.
✱ SeLinux profile specified & SeLinux

enabled on the host.
✱ Running as non-root
✱ Read-only File Systems
✱ Running with a UID > 1000 (i.e. default

no privileges).
Contexts can be applied at both the pod
and container level.

Can be harder
to implement;
greater
security
posture

Runtime security for your Kubernetes clusters

So now how do I actually debug anything?

Removing tooling from images makes it
harder for attackers to exploit, but also
harder for you to debug.

Kubernetes offers ephemeral containers to
solve this.

Allows you to attach another image to an
existing one sharing its network stack,
process and filesystem.

Runtime security for your Kubernetes clusters

Demo: Securely connecting to DBOD
from a python image

Runtime security for your Kubernetes clusters

Understanding when you
are compromised

Runtime security for your Kubernetes clusters

Monitor for abnormal behaviour with falco

Cloud native tool that provides runtime
security in VMs, containers, kubernetes
and cloud environments.

Monitors kernel events, kubernetes audit
logs and a number of other configurable
sources.

Alerts can then be forward to external
providers for investigation / response
(alertmanager, pagerduty etc…)

ref: https://falco.org/img/falco-schema.svg

Runtime security for your Kubernetes clusters

Falco Architecture

ref: https://sysdig.com/blog/intro-runtime-security-falco

Runtime security for your Kubernetes clusters

falco is distributed at CERN at part of templates for
>= 1.31.x
Falco comes pre-installed in CERN
clusters, with event forwarding to STDOUT
only.
i.e. kubectl -n kube-system logs daemonset
cern-magnum-falco

Configuring an alerting source must be
done manually on cluster creation:
✱ alertmanager (recommended)
✱ prometheus
✱ mattermost

Falco’s default alerts are enabled in our
distribution.
$ openstack coe cluster create ... --merge-labels --labels cern_chart_user_values="$(cat
/cluster-user-config.yaml | base64 -w0)" my-falco-cluster

Runtime security for your Kubernetes clusters

falco is alert focusing, not preventative

falco does not block or prevent any
actions.

Provides insights on the low level
behaviours in your environments, to inform
organisational policy definitions.

Crafting rules can be complex, requiring a
good understanding of low level
behaviours.

Fortunately falco comes with a wide range
of sensible default rules (for alerting).

Runtime security for your Kubernetes clusters

Writing your own alerts

Clusters by default have only the
falco_rules.yaml rules enabled from the
falcosecurity/rules repository.

You can choose to write your own alerts or
override behaviours of existing alerts via a
yaml snippet.

Rules take a layering approach to allow
one to easily override behaviour without
needing to rewrite a whole set of rules.

https://github.com/falcosecurity/rules

Runtime security for your Kubernetes clusters

Demo: Setting up Alerting with Falco
https://gitlab.cern.ch/jmunday/webinars

https://gitlab.cern.ch/jmunday/webinars

Runtime security for your Kubernetes clusters

Next Steps: Preventative Measures

✱ Working to integrate the falco setup
inside of cern-magnum with central monit.

✱ Expanding on default alerting rules to
cover a wider range of scenarios.

✱ Preventative measures can be
achieved using Admission Controllers

○ Open Policy Agent Gatekeeper,
Kyverno, etc …

Runtime security for your Kubernetes clusters

For more information, please visit:
https://kubernetes.docs.cern.ch/docs/security/falco

https://falco.org/docs/

