Runtime security for your
Kubernetes clusters

Jack Munday / IT-CD-PI
November 14th, 2024

Kubernetes is not secure by default

Threats can occur at many different levels.
¥ Container

Over-privileged, privilege escalation, image vulnerabilities...

* Host

Compromised host, Resource abuse in multi-tenant envs...

* Internal & Perimeter Networking

Man-in-Middle, DOS, Lateral movement between pods...

* Cluster
Unauthorised access, credential theft ...
Each should be tackled independently to

avoid large shifts in environments and
make the process less overwhelming.

Runtime security for your Kubernetes clusters

Kubernetes is not secure by default

Threats can occur at many different levels.
¥ Container

* Host
* Internal & Perimeter Networking
% Cluster

Each should be tackled independently to
avoid large shifts in environments and
make the process less overwhelming.

Runtime security for your Kubernetes clusters

CHESTERTONS FENCE

DONT TAKE A FENCE DOWN
UNLESS YOU KNOW WHY T wWbs PUT UP

WHAT ADUMB FENCE !
WHXT WERE THEY THINKING !

Sketch P\anab; ons

Runtime security for your Kubernetes clusters

Getting Started

Run

time security for your Kubernetes clusters

Building your docker images

Avoid packaging unrequired tooling into
containers using multi-stage builds.

% Scratch for compiled languages.
% Distroless for interpreted languages.

Removing a shell limits an attackers ability
to use your container for anything other
than its intended purpose.

Using multistage builds in this way will
typically ensure your images are layered
appropriately and can also reduce the
number of vulnerabilities.

golang:1.22.2-bookworm builder

/src

go.mod go.sum ./
go mod download

./cmd . /cmd

-/pkg ./pkg

./internal ./internal
CGO_ENABLED=0 GO0OS=linux go build -o /bin/application

./cmd/main.go

scratch

--from=builder /etc/ssl/certs/ca-certificates.crt
/etc/ssl/certs/

--from=builder /bin/application /bin/application

["/bin/application”]

debian:12-slim build

apt-get update && \

apt-get install --no-install-suggests --no-install-
recommends --yes python3-venv gcc libpython3-dev && \

python3 -m venv /venv && \

/venv/bin/pip install --upgrade pip setuptools wheel

build build-venv
requirements.txt /requirements.txt
/venv/bin/pip install --disable-pip-version-check -r
/requirements.txt

gcr.io/distroless/python3-debianl2:nonroot runtime
PYTHONUNBUFFERED=1
--from=build-venv /venv /venv

./app/ ./app
["/venv/bin/python3", "-m", "app"]

CERN
Z A

Runtime security for your Kubernetes clusters

Security Contexts can then be used to restrict
adding tooling to containers

Ensure that (if compromised) additional ®
tooling can not be added into a container. Spi o onu
kind: Pod
Permissions can be restricted using metadata:
Security Contexts. Spgime security-context-demo
. securityContext
% SeLinux profile specified & SeLinux e
runAsUser: 1001
enabl_ed on the hOSt' rtl:mZGroup 8101010
% Running as non-root fsGroup: 2000
% Read-only File Systems e eten
¥ Running with a UID > 1000 (i.e. default o o
= om [ype: container_
no privileges). levell <sicesizons
containers
Contexts can be applied at both the pod name: sec-ctx-demo
and container level. RS i e T

securityContext
allowPrivilegeEscalation

<(E;RW Runtime security for your Kubernetes clusters

So now how do | actually debug anything?

Removing tooling from images makes it ¢

harder for attackers to exp|0it, but also %_tzgigiz;\"gceiphemeral—demo --image=registry.k8s.10/pause:3.1
harder for you to debug.

pod/ephemeral-demo created

$ kubectl exec -it ephemeral-demo -- sh
KUberneteS Offers tO error: Internal error occurred: error executing command
I th- container: failed to exec container: failed to start exec
soive 1nis. "64fc6e37b4059d1bb63ac35531738b3a0adfbf285f057d01cofelobscO5c

820": OCI runtime exec failed: exec failed: unable to start

container process: exec: "sh": executable file not found
$PATH: unknown

Allows you to attach another image to an Tl S SR T e e e T L e
existing one sharing its network stack, target=ephemeral-deno
prOGeSS and filesystem. Targeting container "ephemeral-demo". If you don't see

processes from this container it may be because the container
runtime doesn't support this feature.

Defaulting debug container name to debugger-hjrjs.

If you don't see a command prompt, try pressing enter.

/ # 1s

bin dev etc home proc root sys tmp usr

<(E;RW Runtime security for your Kubernetes clusters

Demo: Securely connecting to DBOD
from a python image

Runtime security for your Kubernetes clusters

Understanding when you
are compromised

VA

falco

Monitor for abnormal behaviour with falco

Cloud native tool that provides runtime
security in VMs, containers, kubernetes
and cloud environments.

Monitors kernel events, kubernetes audit .
logs and a number of other configurable :
sources.

Alerts can then be forward to external
providers for investigation / response
(alertmanager, pagerduty etc...)

@\ Runtime security for your Kubernetes clusters

Falco Architecture

kube-apiserver

Other services

Syscall events

X

POST
/k8s_audit

[..]
_

kernel

module / sysdig
libraries

-9900—

rule engine

outputs

ref: https:/sysdig.com/blog/intro-runtime-security-falco

Runtime security for your Kubernetes clusters

falco Is distributed at CERN at part of templates for
>=1.31.x

[J
Falco comes pre-installed in CERN I
clusters, with event forwarding to sTpout SO
Only_ enabled
prometheus_metrics_enabled
I.€. kubectl -n kube-system logs daemonset mee;;;led
cern—magnum—falco falcosidekick
enabled
serviceMonitor
1 1 H enabled
Configuring an alerting source must be ISR
done manually on cluster creation: conrrLease: cern-nagnun
alertmanager
%* alertmanager hostport: http://cern-magnum-kube-prometheu-
* prometheus alertmanager.kube-system.svc.cluster.local: 9093
* mattermost minimumpriority: warning
mattermost
messageformat: '**{{ .Hostname }}**: "{{ .Rule }}"
rule triggered'
Falco’s default alerts are enabled in our el S
distribution.
$ openstack coe cluster create ... --merge-labels --labels cern_chart_user_values="$(cat

/cluster-user-config.yaml | base64 -w@)" my-falco-cluster

<(E;RW Runtime security for your Kubernetes clusters

falco is alert focusing, not preventative

falco does not block or prevent any
actions. "

macro: container
condition: container.id != host

Provides insights on the low level "
behaviours in your environments, to inform e
organisational policy definitions.

rule: run_shell_in_container
desc: a shell was spawned by a non-shell program in a

container. Container entrypoints are excluded.
condition: container and proc.name = bash and

Crafting rUIeS car! be Complex, reqUiring a spawned_process and proc.pname exists and not proc.pname in

good understanding of low level ety ddier) . o e
. output ell spawned in a container other than entrypoin

beha\nours- (user=%user.name container_id=%contatiner.id

container_name=%container.name shell=%proc.name
parent=%proc.pname cmdline=%proc.cmdline)"
priority: WARNING

Fortunately falco comes with a wide range
of sensible default rules (for alerting).

<(E;RW Runtime security for your Kubernetes clusters

Writing your own alerts

Clusters by default have only the
falco_rules.yaml rules enabled from the
repository. falco

customRules
disable-alert-if-dev-team.yaml
- list: application_dev_users

. items:
You can choose to write your own alerts or - admin'
override behaviours of existing alerts via a - "system:serviceaccount:app-ns:app-sa-name!
yaml snippet. - macro: allowed_user

condition: ka.user.name in (application_dev_users)

- rule: Noisy alert (i.e. 'K8s Secret Get Successfully')

Rules take a layering approach to allow i
one to easily override behaviour without condition: append

needing to rewrite a whole set of rules.

<(E;RW Runtime security for your Kubernetes clusters

https://github.com/falcosecurity/rules

Demo: Setting up Alerting with Falco

Runtime security for your Kubernetes clusters

https://gitlab.cern.ch/jmunday/webinars

Next Steps: Preventative Measures

% Working to integrate the falco setup
inside of cern-magnum with central monit.

% Expanding on default alerting rules to
cover a wider range of scenarios.

¥ Preventative measures can be

achieved using Admission Controllers
o Open Policy Agent Gatekeeper,
Kyverno, etc ..

@\ Runtime security for your Kubernetes clusters

For more information, please visit:

Runtime security for your Kubernetes clusters

