Reconstructing and calibrating jets

Physics programme

- Test the self-consistency of the Standard Model
 - Huge variety of processes analysed
 - Approximatively 7 orders of magnitudes of cross-sections measured
 - Majority already systematics-dominated

LHC-EW WG2

Overview of CMS cross section results

CMS results See here for all cross sections and exclusion limits at 95% C.L.

Inner colored bars statistical uncertainty, outer narrow bars statistical+systematic uncertaint Light colored bars: 7 TeV, Medium bars: 8 TeV, Dark bars: 13 TeV, Black bars: theory predictio

Andrea Malara

07 August 2024 2

Physics programme

TeV energy frontier

- Enormous range of energy investigated (up to 10TeV)
- Multitude of different models studied

Andrea Malara

LHC-EW WG2

07 August 2024

3

Era of precision physics

- Jet-related uncertainties are becoming a limiting factor in many analyses
- Jets are abundant at the LHC -> hadronic decays, associated prod. with jets...
- Jet energy scale -> impact on: top, Higgs, multijet analyses

ttbar cross section dilepton

Era of precision physics

- Jet-related uncertainties are becoming a limiting factor in many analyses
- Jets are abundant at the LHC -> hadronic decays, associated prod. with jets...
- Jet energy scale -> impact on: top, Higgs, multijet analyses
- ... but also boosted searches -> merged decay products
- Must be known very well for a wide range in energy and pseudorapidity

Experimental setup: CMS

- Multi-purpose detector
- Layered structure
 - Tracker
 - Electromagnetic calorimeter
 - Hadron calorimeter
 - Solenoid
 - Muon chambers
- Particle reconstruction
 - Detector signals -> physics objects
 - Based on ParticleFlow algorithm
 - Operational since 2010, this talk focuses on:
 - Run2 data (2016-2018), $\sqrt{s} = 13$ TeV
 - Run3 data (2022-ongoing), $\sqrt{s} = 13.6 \text{ TeV}_{arXiv:1101.3276}$ Andrea Malara

Hadronic environment

ULB

As a consequence of the hadronisation of quarks and gluons produced in pp collisions, a collimated shower of hadrons (jet) is produced.

Click me

From detector signals to jet calibration

Local reconstruction: Tracks, ECAL, HCAL

Information from sub-detectors
 Similar method online but less detail

Proton-proton collision @ LHC

Pileup

- Challenging environment for LHC physics
 - Additional interactions (pileup)
 - Average of 30 interactions in Run 2
 - Average of 50 interactions in Run 3 (so far...)

ULB

LHC-EW WG2

Andrea Malara

Proton-proton collision @ LHC

Pileup

- Challenging environment for LHC physics
 - Additional interactions (pileup)
 - Average of 30 interactions in Run 2
 - Average of 50 interactions in Run 3 (so far...)
- Additional particles deteriorate measurements
- Several approaches to cope with it

LHC-EW WG2

07 August 2024

14

ULB

Andrea Malara

Pileup mitigation techniques

Reconstructed Jet

Andrea Malara

Pileup mitigation techniques

Charged Hadron Subtraction (CHS)

- Tracker information to remove charged particles associated to PU
- Neutral particles energy subtracted
- Applicable for $|\eta| < 2.4$

Andrea Malara

Pileup mitigation techniques

Charged Hadron Subtraction (CHS)

- Tracker information to remove charged particles associated to PU
- Neutral particles energy subtracted
- Applicable for $|\eta| < 2.4$

Pileup Per Particle Identification (Puppi) Puppi in CMS

- Per-particle weight
- Scale 4-momentum before clustering
- Charged particles similar to CHS
 - Redefined track-vertex association

Pileup mitigation techniques – Puppi for Run 3

- Widely used in Run 2, default in Run 3
- Improved all jet-related variables
 - Jet efficiency and purity (matched to generator-level jets)
 - Jet substructure
 - New optimation to include hadronic tau reconstruction: <u>CMS-DP-2024-043</u>

Jet reconstruction

- > Anti- $k_{\rm T}$ as default algorithm
 - small radius: R=0.4 (AK4)
 - ► large radius: R=0.8 (AK8)

Jet reconstruction

- Anti- $k_{\rm T}$ as default algorithm
 - small radius: R=0.4 (AK4)
 - Iarge radius: R=0.8 (AK8)
 - alternative algorithms: CA, HOTVR, XCone

 \mathbb{CN}

Jet reconstruction

- Anti- $k_{\rm T}$ as default algorithm
 - small radius: R=0.4 (AK4)
 - ► large radius: R=0.8 (AK8)
 - alternative algorithms: CA, HOTVR, XCone

3

2

0

-

-2

-3

Event 1

clustered with CA

Jet reconstruction – XCone

- Event signature defines clustering
- Return exactly N jets
- Examples from top-mass measurement
- Large improvement for the jet mass resolution

Jet reconstruction – XCone

Tagging

- Type of elementary particle that initiated the jet
 - Boosted topology -> Collimated decay products reconstructed as multi-prong objects

Tagging

- Type of elementary particle that initiated the jet
 - Boosted topology -> Collimated decay products reconstructed as multi-prong objects
- Jet flavor (b vs light, b vs c, ...)

Tagging

- Type of elementary particle that initiated the jet
 - Boosted topology -> Collimated decay products reconstructed as multi-prong objects
- Jet flavor (b vs light, b vs c, …)
- Jet mass (ML with regression)

Andrea Malara

Tagging

- Type of elementary particle that initiated the jet
 - Boosted topology -> Collimated decay products reconstructed as multi-prong objects
- Jet flavor (b vs light, b vs c, …)
- Jet mass (ML with regression)
- Jet substructure

Tagging

- New ML developments with:
 - HOTVR + BDT
 - Vector boson charge tagger

CM

Andrea Malara

CM

Andrea Malara

LHC-EW WG2

07 August 2024 31

CM

Andrea Malara

LHC-EW WG2

07 August 2024 34

СM

CM

CMS-DP-2024-039

СM

CMS-DP-2021-033

СM

CMS-DP-2024-039

ULB

CM

Andrea Malara

LHC-EW WG2

07 August 2024 38

CMS-DP-2021-033

CM

MC truth correction: PU subtraction Jet response calibration

- **Residual corrections**
- Jet energy resolution smearing
- Jet energy scale uncertainties
- Uncertainty $\sim 1\%$ for jets pt >100 GeV
- Increasing contribution from PU
- Detector degradation:
 - Ageing, damage, …

Andrea Malara

Current and future developments

Machine learning:

- More performant wrt traditional algorithms
- Currently used for jet mass regression:
 - Direct effect on analyses's sensitivity
- Simultaneous training of tagging and regression for energy and mass:

СM

Summary and Outlook

Andrea Malara

LHC-EW WG2

07 August 2024 41

~~~ Additional Material ~~~

Andrea Malara

LHC-EW WG2

07 August 2024 42

Current and future developments

Run3 calibration

- Usually small corrections for data offline...
 - … corresponds to small effect on data online (triggers)
- Run3:
 - \blacktriangleright Substantial corrections needed ($\sim 10/20\,\%$, up to x2 in endcaps)
 - Fraction of data collected less efficiently

34.3 fb⁻¹, 2022 (13.6 TeV)

pre-HCAL update post-HCAL update

AK4PF jet with pT > 500 GeV

800

1000

600

CMS Preliminary

200

400

Efficiency

1.0

0.8

0.6

0.4

0.2

0.0

0

Andrea Malara

Andrea Malara

 $\alpha_{i} = \log \sum_{j \neq i, \Delta R_{ij} < R_{0}} \left(\frac{p_{\mathrm{T}j}}{\Delta R_{ij}} \right)^{2} \begin{cases} \text{for } |\eta_{i}| < 2.5, & j \text{ are charged particles from leading vertex} \\ \text{for } |\eta_{i}| > 2.5, & j \text{ are all kinds of reconstructed particles} \end{cases}$

1. For each particle calculate

$$\chi_i^2 = \frac{(\alpha_i - \bar{\alpha}_{PU}) |\alpha_i - \bar{\alpha}_{PU}|}{RMS_{PU}^2}$$

2. Assign a weight to each particle

$$w_i = F_{\chi^2, NDF=1}(\chi_i^2)$$

Validation of PUPPI

Performances of PUPPI jets/MET were extensively studied and compared to CHS jets/PF MET in <u>JME-18-001</u>

PUPPI tune v15

<u>DP2021-001</u>

Charged particles	CHS	PUPPI v15		
used in the LV fit	keep	keep		
used in the PU vertex fit	reject	if 1st or 2nd PU verte && $ d_z < 0.2$ cm keep else reject		
not used in a vertex fit	keep	n < 2.4	$p_T > 20 \text{ GeV}$	$p_T < 20 \text{ GeV}$
		$ \eta > 2.4$	keep	if $ d_Z < 0.3$ cm keep else reject

Tab. 1: Categories for charged particles in CHS and PUPPI.

A charged particle can be either: used in the fit of the LV, used in the fit of a PU $_{p_{T}}$ vertex or not used in any fit (see plot on the top left). The categories $_{p_{T}}$ for CHS and PUPPI for each of the cases is shown in Tab. 1.

In order to recover tracks mistakenly used in the fit of another vertex (vertex splitting or track stealing by a nearby PU vertex), charged particles belonging to one of the first two PU vertices and with $|d_Z| < 0.2$ cm are kept.

PUPPI tune v17

	$p_T > 20 \; {\rm GeV}$	$p_T < 20 \text{ GeV}$	
η < 2.4	keep	calculate a weight	
$ \eta > 2.4$	keep	if $ d_Z < 0.3 \text{ cm keep}$ else reject	
	$p_T > 20 \; { m GeV}$	$p_T < 20 \text{ GeV}$ $p_T > 4 \text{ GeV \& FromPV} = = 2$	V else
$ \eta < 2.4$	keep	keep	calculate a weight
$ \eta > 2.4$ p_T	keep	keep K	if $ d_Z < 0.3$ cm keep else calculate a weight

Pileup mitigation techniques – Puppi for Run 3

52

- Widely used in Run 2, default in Run 3
- Improved all jet-related variables
 - Jet efficiency and purity (matched to generator-level jets)
 - Jet substructure
 - Jet resolution (the lower the better)
 - Improved performance also on lepton isolation, missing transverse energy, ...

