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Explosive increase in the use of ML 
techniques in the last 5-10 years!
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NASA ADS. https://ui.adsabs.harvard.edu/ 



~2700 papers 
Includes AI and ML techniques 
applied to the fields of astronomy 
and astrophysics 

Application of AI and ML in 
the field of stellar analysis. 

Study of cosmology using AI and 
ML methods 

Analysis of galaxies by means of AI 
and ML techniques 

Rodríguez, J.-V., Rodríguez-Rodríguez, I., & Woo, W. L. (2022). 
On the application of machine learning in astronomy and 
astrophysics: A text-mining-based scientometric analysis.
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Why ML/AI in Astrophysics?
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 Evolution of Astronomical Surveys Data Volumes

Vera rubin 
Observatory

Òscar Maireles-González et al 2023
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Why ML/AI in Astrophysics?

• Bigger and more complex datasets available (open source). ML is almost a necessity. 
And the future will become more demanding (Rubin, SKA). 

• Techniques become more popular and better known. 

• Availability of better computing infrastructures (GPUs, cloud services) and more 
funding for AI-based projects. 

• No ethical issues like privacy concerns or biases that may affect other disciplines.  

• Success stories involving citizen science projects.  
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Astronomical Data
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Astronomical Data: Images and Photometry
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• They are not "photos" like those from regular cameras but maps of light intensity, where each 
pixel represents the amount of light coming from a point in the sky.

• Obtained using telescopes equipped with detectors like CCDs (Charge-Coupled Devices).

• Photometry is the precise measurement of the amount of light (flux) emitted by an 
astronomical object.

• Performed in specific wavelength bands (e.g., u,g,r,i,z from the SDSS photometric system).

• Helps study properties such as:

• Apparent and absolute brightness.

• Temperature and composition of stars.

• Mass distribution in galaxies.

Astronomical Data: Images and photometry
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Astronomical Data: Spectra
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• A spectrum is the distribution of light intensity from an astronomical object as a 
function of wavelength or frequency.

• Provides detailed information about the physical, chemical, and dynamical properties of 
celestial objects.

• Key Features in Spectra:

• Continuum: Smooth emission from the object's surface or gas.

• Absorption Lines: Dark lines where specific wavelengths are absorbed by 
elements.

• Emission Lines: Bright lines where specific wavelengths are emitted by hot 
gas.

Astronomical Data: Spectra
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Astronomical Data: Transient Objects and Time Series
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• Variations in the brightness, velocity, or other properties of astronomical objects.

• Periodicity: Repeated patterns in brightness or velocity (e.g., pulsating stars, eclipsing 
binaries).

• Transients: Sudden, non-repeating events (e.g., supernovae, microlensing).

• Types of transients: 

• Variable Stars: Study pulsating stars (e.g., Cepheids) to measure distances.

• Exoplanet Detection: Detect transits as a planet passes in front of its host star.

• Binary Systems: Measure radial velocity variations to determine orbital parameters.

• Transient Events: Monitor supernovae or gamma-ray bursts.

Astronomical Data: Transient Objects and Time Series
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Astronomical Data: Simulations

Illustris Project
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https://www.illustris-project.org/


Astronomical Data: Simulations

Auriga Simulation
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https://wwwmpa.mpa-garching.mpg.de/auriga/index.html


• Simulations in astronomy model the evolution and behavior of astrophysical systems using 
computational methods and physical principles.

• The purpose is the study of processes that are difficult or impossible to observe directly, such as 
galaxy formation, large-scale structure evolution, or star formation.

• How Simulations Work

• Input Physics:  Include gravity, hydrodynamics, radiation, and feedback processes (e.g., from 
supernovae), magnetism, dark matter, and dark energy.

• Numerical Methods: Use grids or particles to represent matter and solve equations governing 
astrophysical processes. Common methods include N-body simulations (gravity-dominated) 
and smoothed-particle hydrodynamics (SPH) for fluids.

• Scale: Simulations can range from small (e.g., single star) to large-scale cosmological 
simulations.

Astronomical Data: Simulations
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Astronomical Data: Catalogs

Gaia HWC
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https://www.esa.int/Science_Exploration/Space_Science/Gaia
https://phl.upr.edu/hwc


Gaia 
2013-2025

https://www.cosmos.esa.int/web/gaia/end-of-observations

https://www.cosmos.esa.int/web/gaia/end-of-observations


• Collections of data about astronomical objects, including their positions, brightness, 
motions, and other properties.

• Object Information: Include coordinates (e.g., right ascension and declination), 
magnitudes, distances, velocities, and classifications.

• Large Scale: Modern catalogs can contain millions or even billions of objects (e.g., Gaia 
DR3).

• Multidimensional Data: Combine photometric, astrometric, and spectroscopic data.

• Some examples: Gaia, SDSS, 2MASS, APOGEE, Hipparcos, NASA Exoplanets, ….

Astronomical Data: Catalogs
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How ML/AI is been used in Astronomy
• Classification: Categories or labels are applied to objects or features. Based on a 

training set (labeled or unlabeled), the algorithm learns the characteristics that relate 
an instance to a category. When applied to a new instance, the algorithm assigns the 
most likely category label. 

• Regression: Assignment of a numerical value (or values) based on the 
characteristics that are learnt or otherwise predicted by the machine learning 
algorithm. As with classification, a training set may be used or the characteristics may 
be inferred from the dataset. 

• Clustering: Determine whether an object or a feature is part of (i.e., a member of) 
something. This might be a physical structure or association—as in the more familiar 
usage of the term in astronomy as applied to open, globular, or galactic clusters—or a 
region within an N-dimensional parameter space. 

Fluke and Jacobs (2019), Surveying the reach and maturity 
of machine learning and artificial intelligence in astronomy 
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How ML/AI is been used in Astronomy
• Forecasting:  The purpose of the machine learning algorithm is to learn from previous 

events, and predict or forecast that a similar event is going to occur. There is an implicit time-
dependence to the prediction

• Generation and reconstruction: Missing information is created, expected to be 
consistent with the underlying truth. The cause of the missing information might be due to the 
presence of noise, processing artifacts, or additional astronomical phenomena, all of which 
conspire to obscure the required signal. 

• Discovery: New celestial objects, features, or relationships are identified as a consequence 
of the application of a ML or AI method. 

• Insight: Moving beyond the discovery of celestial objects, new scientific knowledge is 
demonstrated as a consequence of applying machine learning or AI. This includes cases where 
insight is gained into the suitability of applying machine learning, choice of data set, 
hyperparameters, and comparisons with human-based classification. 

Fluke and Jacobs (2019), Surveying the reach and maturity 
of machine learning and artificial intelligence in astronomy 
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Techniques

2017; Hui et al., 2018; Kong et al., 2018; Yan et al., 2018; Zhang, Zhang, & Zhao, 2018) have been used extensively
across most data types. CNNs are more suitable for image-style data (see above), although they have been used success-
fully with one-dimensional light curves (Shallue & Vanderburg, 2018, identification and ranking of transiting exoplanet
candidates in Kepler light curves, including the discovery of two new exoplanets) and time series (George & Huerta,
2018a, 2018b, identification of gravitational wave signatures within noisy time series data—a solution that scales better
than template matching as the number of templates grows). DBSCAN (Castro-Ginard et al., 2018) and k-NN
(Smirnov & Markov, 2017) have been used to find structures in multidimensional catalogues. Given the prevalence of
imaging data in astronomy, it is not surprising that images are being analyzed with the largest range of ML/AI
methods.

There is still plenty of scope for studies that perform structured comparisons between multiple methods. This can
occur more easily when reference datasets are made accessible to the community. For example, the availability of the
PHoto-z Accuracy Testing datasets (Hildebrandt et al., 2010) allowed Cavuoti, Brescia, Longo, and Mercurio (2012) and
Brescia, Cavuoti, D'Abrusco, Longo, and Mercurio (2013) to establish the efficacy of a multilayer perceptron
(i.e., neural network) method coupled with the Quasi Newton Algorithm (MLPQNA) at assigning photometric redshifts
for galaxies and quasars, respectively. Training on the PHAT-1 spectroscopic sample, MLPQNA out-performed alterna-
tive statistical and neural network-based methods (e.g., ANNz; Collister & Lahav, 2004) with regards to bias10 for all
objects, bright objects, and distant versus near objects in the PHAT-1 sample (Cavuoti et al., 2012). Studies into the
accuracy and validity of ML-based photometric redshifts continues today—see, for example, Almosallam, Jarvis, and
Roberts (2016), Cavuoti, Amaro, et al. (2017) and Amaro et al. (2019).

Looking more broadly, these systematic comparisons tend to be occurring more often in solar astronomy than in
other disciplines (e.g., Florios et al., 2018; Inceoglu et al., 2018; Nishizuka et al., 2017), although see Ksoll et al. (2018);
Pashchenko, Sokolovsky, and Gavras (2018), and Zhang et al. (2018) for examples pertaining to stellar and variable star
classifications. While certain disciplines have adopted specific methods, experimentation with emerging techniques is
on-going (e.g., probabilistic RFs and transfer learning Reis, Baron, & Shahaf, 2019).

3 | ASSESSING THE MATURITY OF ADOPTION

The seven categories introduced in Section 2.2 allow an assessment of the maturity of the use of machine learning and
artificial intelligence within a subfield of astronomy, as they represent a loose hierarchy of sophistication. The common
starting point is to apply a machine learning technique to perform a classification, regression or clustering task. Once
established as being comparable to, or exceeding, a more traditional approach, machine learning can be used to
forecast likely future outcomes (e.g., solar flares [Florios et al., 2018; Nishizuka et al., 2017] or coronal mass ejec-
tions from the Sun [Inceoglu et al., 2018]) or make new discoveries (e.g., classification schemes for stellar types
permitting the identification of new candidates of rare objects as in Bu et al., 2017, van Roestel et al., 2018, and
Zhang et al., 2018). The most mature disciplines move beyond classification and discovery as ends in their own to

TABLE 2 From a qualitative examination of a sample of !200 refereed publications from 2017 to February 2019, a mapping emerges
between the nature of astronomical data and the types of machine learning and artificial intelligence algorithms that are being applied

Data/method ANN CNN GAN SVM DT RF DBSCAN k-NN k-M

Image • • • • • • •
Spectroscopy • • • • •
Photometry • • • • •
Light curve • •
Time series • • • • •
Catalogue • • • • • •
Simulation • • • • •

Notes: The table presents a summary of the types of astronomical data and the algorithms that appeared most regularly. The purpose of the table is to provide a
convenient starting point for selecting an algorithm that has been used successfully for each data type.
Abbreviations: ANN, artificial neural network; CNN, convolutional neural network; DBSCAN, density-based spatial clustering of applications with noise; DT,
decision tree; GAN, generative adversarial network; k-M, k-means clustering; k-NN, k-nearest neighbors; RF, random forest; SVM, support vector machine.

FLUKE AND JACOBS 9 of 24
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of machine learning and artificial intelligence in astronomy 
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Most used models! 



• Classification and forecasting of solar flares. Segmentation for identification of umbra/penumbra/
photosphere in the solar surface. 

• Identification of candidates to extrasolar planets from stellar lightcurves (Kepler) 

• Stellar and photometric classification of stars, leading to finding new objects of specific types of stars (WR, hot 
sub-dwarfs, etc). 

• Classification of galaxies from optical and radio imaging surveys. Prediction of physical properties from 
emission-line spectra. Identification of galaxies undergoing a special evolutionary phase as predicted by 
simulations. 

• Identification and classification of transient objects. 

• Accurate estimation of distance to extragalactic objects from photometric information (photometric redshift). 

• Identification of systems affected by gravitational lenses in wide-area surveys 

• Discriminating noise from signal in the detection of gravitational waves. 

Well-Established Applications
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• Reduction of false detections from the moving objects detection pipelines. 
Detection and classification of asteroids. 

• Assigning morphological types to radio-detected AGNs.

• Identification of blazar candidates in catalogues of high-energy sources (Fermi-
LAT)

• Detecting high-redshift extremely luminous quasars

• Discriminating populations of BAL QSOs from non-BAL QSOs 

• Examination of the output of cosmological simulations to connect physical 
properties of galaxies, dark matter halos and the cosmic environment.

• Classification of DM sub-halos.  Assignment of galaxies to halos in simulations. 

Progressing Applications 
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• Classification of atmospheric features on the Surface of Mars aiming at predicting 
dust storms.

• Discovery of previously unknown impact craters. 

• Study of the ISM in our Galaxy. Spatial or chemical clustering of components in 
atomic and molecular clouds. 

• Determination of dust reddenning in millions of stars, with application to GAIA 
data.

•  Discovery of new open clusters from overdensities in GAIA DR2 data 

• Identify faults in telescope drive systems that can be tackled in real time with 
automated expert systems 

Emerging Applications 
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Some examples…
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Galaxy Zoo Goal:  Train a model to classify the morphology of galaxies based on 
their images 

Datasets (> 300.000 galaxies): 

• Sloan Digital Sky Survey (APO, US, 2.5m) 

• Dark Energy Camera Legacy Survey (DECaLS) (V.  
Blanco Telescope, Chile, 4m) 

• Hawaii H2O Survey (Subaru Telescope, US,  
8.2m)

• Cosmic Evolution Early Research Science  
(CEERS) with JWST (Space, 6.5m) 

Methodology: 

• Train a classifier with labelled data 

• Labels are put by thousands of volunteers with  
no specific field knowledge 

Results:

• 7.5M classifications(!) from which 140.000 get > 30 classifications 

• Robust classifications 

• Some work to be done to flag misclassifications 

• This enabled producing >75 publications 2008-2023 
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Discovery of new clusters in the Galaxy
Goal: Identify new open clusters within the Galactic 
disc using Gaia DR2 data.

Methodology: 

• Applied a clustering algorithm (DBSCAN) to Gaia 
DR2 astrometric data.

• Validated findings with color-magnitude diagrams and 
proper motion analysis.

Results:

• Discovered 582 new nearby open clusters

• Confirmed the existence of these clusters through 
independent methods.

• Enhanced understanding of the Galactic disk's 
structure.

Hunting for open clusters in Gaia DR2: 582 new open clusters in the Galactic disc (Castro-Ginard et al., 2020)
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Planet Hunters TESS
Goal: Identify exoplanets by using the 
transit method. 

Data: Lightcurves observed with dedicated 
space missions: Kepler or TESS 

Method: 

• Build a classifier that automatically 
identifies potential candidates 

• Volunteers help to identify tricky or 
borderline patterns, suggesting a  
classification (variable star, data glitch, 
potential planet) 

Results: More than 100 new planetary 
systems identified in Kepler data 
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Vera Rubin: Massive data 
processing in (near) real 
life!

• Cover all the visible sky every 
2-3 nights (~20TB per night)

• Exhaustive study of the 
transient sky. About 10 million 
of alerts per night (20.000 alerts 
per minute)

• Latency of alert: 60 seconds

What’s next? Tons of data!!! 
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SKAO: World’s largest radio observatory

• The SKA will detect hundreds of millions of astrophysical systems

• Expected to generate 600 PB/year

What’s next? Tons of data!!! 
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• Scalability: Ensuring AI methods can handle the exponential growth in data volume.

• Data Quality: Dealing with noisy, incomplete, or biased astronomical datasets.

• Computational Resources: Making AI accessible for institutions with varying 
computational capabilities.

Challenges
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• Wednesday:  Membership determination in open clusters using 
DBSCAN

• Thursday: Photometric redshift using Decision Trees, Random Forest 
and Neural Networks

Hands-on Sessions
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Membership determination in open 
clusters using DBSCAN

Basic concepts
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Clustering

Clustering is the grouping of objects into a "cluster" such that they are similar (or 
related) to each other and different (or unrelated) from objects in other clusters.

A successful clustering scheme is 
one where the distances between 
clusters are large, and the 
distances within a cluster are 
small.

Max 

Min 
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Density-based clustering

Density-based clustering algorithms, such as DBSCAN, identify clusters by finding 
areas of higher density in the data. This allows them to work with arbitrarily 
shaped clusters and automatically determine the number of clusters.

The operation of DBSCAN is controlled by hyperparameters: the proximity threshold 
that defines cluster density (eps) and the minimum number of samples in a cluster 
(min_samples). Finding the optimal values for these hyperparameters is challenging 
(similar to finding the optimal  in K-means) because tuning hyperparameters in 
unsupervised algorithms is not straightforward.

This method is particularly useful for identifying outliers.

k

Nice visualization in https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/
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DBSCAN pseudocode
162 Chapter 7 Clustering and Dimensionality Reduction

'PS FBDI VOBTTJHOFE FYBNQMF YJ�

• $IFDL XIFUIFS UIFSF BSF BU MFBTU ONJO QPJOUT XJUIJO B EJT�
UBODF PG ε 	UIBU JT XIFUIFS UIF TBNQMF JT B DPSF TBNQMF
�

• *G ZFT JNQMFNFOU UIF �FYQBOE UIF DMVTUFS� TFRVFODF�

�&YQBOE UIF DMVTUFS� TFRVFODF�

• "TTJHO BMM TBNQMFT XJUIJO EJTUBODF ε PG UIF DVSSFOU DPSF
TBNQMF UP DMVTUFS�

• 'PS FBDI OFXMZ BTTJHOFE OFJHICPS YK UIBU JT B DPSF QPJOU
JNQMFNFOU UIF �FYQBOE UIF DMVTUFS� TFRVFODF BSPVOE YK�

#FDBVTF DMVTUFST BSF CVJMU MPDBMMZ PO UIF CBTJT PG WJDJOJUZ BNPOH QPJOUT DMVT�
UFST PG BSCJUSBSZ TIBQFT DBO CF EFUFDUFE CZ %#4$"/ BOE UIF OVNCFS PG DMVTUFST JT
EFUFSNJOFE BVUPNBUJDBMMZ EVSJOH UIF QSPDFTT� ĉFTF NJHIU BQQFBS BT HSFBU BEWBO�
UBHFT PWFS L�NFBOT CVU JO SFBMJUZ UIF OVNCFS PG DMVTUFST UIBU BSF GPSNFE 	BOE
UIFSFGPSF UIF RVBMJUZ PG UIF DMVTUFSJOH TDIFNF
 JT HSFBUMZ EFQFOEFOU PO UIF QSPYJN�
JUZ UISFTIPME ε BOE JO NJOPS NFBTVSF PO UIF NJOJNVN OVNCFS PG QPJOUT SFRVJSFE
GPS B DMVTUFS BT TIPXO JO 'JHVSF ���� ĉF QBSBNFUFS ε JT FĎFDUJWFMZ B IZQFSQBSBNF�
UFS PG UIF BMHPSJUIN BOE KVTU MJLF UIF L JO L�NFBOT JU DBO�U CF TJNQMZ EFUFSNJOFE
WJB DSPTT WBMJEBUJPO MJLF XF EP JO TVQFSWJTFE MFBSOJOH QSPCMFNT� ĉFSF BSF TPNF
FNQJSJDBM XBZT UP IVOU GPS UIF CFTU ε XIJDI BĨFNQU UP NFBTVSF UIF iUZQJDBM EFO�
TJUZ TDBMFu PG EBUB CZ QMPĨJOH JUT L// EJTUBODF EJTUSJCVUJPO UP FTUJNBUF ε BOE BSF OPU
VOMJLF UIF FMCPXNFUIPE�ĉF015*$4 <"OLFSTU FU BM� ����> BMHPSJUINHFOFSBMJ[FT
%#4$"/CZ JODPSQPSBUJOH UIF FTUJNBUF GPS UIF CFTU ε CVU JU JT JO JUTFMG B QBSBNFUSJD
BMHPSJUIN BOE EPFT OPUXPSLXFMM XJUI UIF TNJMFZ GBDF EJTUSJCVUJPO�ĉFCPĨPN MJOF
JT UIBU VOMFTT XF IBWF TPNF LOPXMFEHF PG PVS EBUB 	F�H� TPNF FYQFDUBUJPOT BCPVU
UIF TIBQF PG UIF EJTUSJCVUJPO PS UIF OVNCFS PG DMVTUFST
 DMVTUFSJOH BMHPSJUINT DBO
POMZ QSPWJEF MJNJUFE JOTJHIUT�

7.3 MIXTURE MODELS
" WBSJBUJPO PG UIF HMPCBM PCKFDUJWF GVODUJPO BQQSPBDI JT UP ėU UIF EBUB UP B QBSBN�
FUFSJ[FE NPEFM� ĉF QBSBNFUFST GPS UIF NPEFM BSF EFUFSNJOFE GSPN UIF EBUB BOE
UIFZ EFUFSNJOF UIF DMVTUFSJOH� "T UIF OBNF TVHHFTUT NJYUVSF NPEFMT BTTVNF UIBU
UIF EBUB JT B iNJYUVSFu PG B OVNCFS PG TUBUJTUJDBM EJTUSJCVUJPOT BOE UIFZ ėU UIF QBSBN�
FUFST PG UIPTF EJTUSJCVUJPOT� *G XF VTF L�NFBOT BT B CBTFMJOF GPS DPNQBSJTPO XF TFF
TPNF TJNJMBS MJNJUBUJPOT 	NPTU OPUBCMZ UIF OVNCFS PG EJTUSJCVUJPOT OFFET UP CF
TQFDJėFE JO BEWBODF
 CVU BMTP TPNF TJHOJėDBOU JNQSPWFNFOUT� .JYUVSF NPEFMT DBO
BDDPNNPEBUF DMVTUFST PG OPOHMPCVMBS TIBQFT 	CFDBVTF UIFZ MFBSO BCPVU UIF TIBQFPG
UIF EJTUSJCVUJPO JO BEEJUJPO UP JUT DFOUFS
 BOE FWFO NPSF JNQPSUBOUMZ UIFZ QSPWJEF
B QSPCBCJMJTUJD JOUFSQSFUBUJPO PG DMVTUFS NFNCFSTIJQ TP UIFZ BSF BCMF UP SFUBJO TPNF
JOGPSNBUJPO BCPVU UIF EFHSFF PG DPOėEFODF JO FBDI QPJOU�T BTTJHONFOU� ĉBOLT UP
UIJT QSPQFSUZ UIFZ DBO CF VTFE BT B HFOFSBUJWFNPEFM UP QSPEVDF OFX TBNQMFT UIBU BSF
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DBSCAN example
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Stellar 
evolution in 
one slide!
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Herztprung-Russell and Color-Magnitude diagram
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Herztprung-Russell and Color-Magnitude diagram

Physics without Frontiers: Chile | School of Machine Learning, UTFSM, January 13-17 2025

https://www.youtube.com/watch?v=mY2edzGYWyU


Stellar evolution and the HR diagram
• Main sequence (MS): Core hydrogen 

burning phase. Longest phase of evolution 

• Turn-Off: Hydrogen exhausted in core. 

• Red Giant Branch (RGB): Hydrogen 
Burning in shell around inert helium core. 

• RGB tip: end of the RGB

• HB (RC): Helium burning in the core 
(details depends on the mass loss) 

• Asymptotic Giant Branch (AGB): He 
burning in shell around an inert C/O core. 
Complicated mass dependent evolution 
from now on. • This classification is related to stellar evolution. 

• Here an example of the evolution of a low- and intermediate mass stars in the HR 

diagram

• In a cluster (group of coeval stars) the presence of stars in some evolutionary stages 

is indicative of the cluster age. 

The HR diagram: classification based on the evolutionary
phase
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Most of the massive stars are in the MS, while low-mass stars are in the T-Tauri stage
12/10/15 School' of'Astrophysics' "Francesco' Lucchin"

Most'of'the'high'mass'stars'have'reached'the'Main'Sequence,'while'
some'of'the'lower'mass'stars'are'still'in'the'T'Tauri phase

The'evolution'of'the'HR'diagram

T = 0

Stellar evolution and the HR diagram
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O-type stars have exhausted all their hydrogen and evolve off the MS

The'evolution'of'the'HR'diagram

12/10/15 School' of'Astrophysics' "Francesco' Lucchin"

The'highest'mass'O'stars'have'used'up'all'of'their'hydrogen'and'begin'to'
evolve'off'the'Main'Sequence

 yearsT = 107

Stellar evolution and the HR diagram
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O-type stars exploded as supernovae, while B-type stars evolve off the MS
12/10/15 School' of'Astrophysics' "Francesco' Lucchin"

The'evolution'of'the'HR'diagram
All'of'the'O'stars'have'gone'supernova.'The'B'stars'begin'to'evolve'off'the'Main'

Sequence
Stellar evolution and the HR diagram

 yearsT = 108
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B-type stars that are sufficiently massive explode as supernovae, while 
the rest evolve into red giants. A-type stars begin to leave the MS

12/10/15 School' of'Astrophysics' "Francesco' Lucchin"

The'evolution'of'the'HR'diagram
All'of'the'B'stars'that'are'massive'enough'have'gone'supernova'and'the'rest'
have'evolved'into'red'giants.'The'A'stars'begin'to'evolve'off'of'the'Main'

Sequence
Stellar evolution and the HR diagram

 yearsT = 109
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OBAFG-type stars have evolved off the MS, the giant branch is heavily populated, and there 
are already several white dwarfs. The MS is primarily composed of K and M-type stars
12/10/15 School' of'Astrophysics' "Francesco' Lucchin"

The'evolution'of'the'HR'diagram
The'OBAFG'stars'are'all'missing'from'the'Main'Sequence,'the'red'giant'branch'
is'very'well'populated,'and'there'are'also'many'white'dwarfs.'Only'K'&'M'stars'

remain'on'the'Main'Sequence.

 yearsT = 1010

Stellar evolution and the HR diagram
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A star cluster is crucial for understanding stellar evolution because historically, they are 
considered simple stellar populations (SSPs):

• All stars form at the same time (same age).

• All stars have the same composition.

• All stars are at the same distance.

CMD of star clusters
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Density: 

Core radii: 

Mass: 

Age: 

Median age: 

Gravitationally bound

Chemically homogeneous

No gas left

Almost coeval

Location: Galactic disk

0.1 − 102 stars pc−3

∼ 2 pc

102 − 103 M⊙

0.01 − 10 Gyr

0.3 Gyr

Open clusters
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Open clusters

Kalirai et.  al. (2001)

The Color-Magnitude diagramThe Color-Magnitude diagram

NGC2099
Age ~ 500 MyrCMD OF A YOUNG 

CLUSTER 

Kalirai et al. 2001, AJ, 122, 3239

The Color-Magnitude diagramThe Color-Magnitude diagram

NGC2099
Age ~ 500 MyrCMD OF A YOUNG 

CLUSTER 

Kalirai et al. 2001, AJ, 122, 3239
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Open cluster membership

Cordoni et. al. (2018)

The Color-Magnitude diagramThe Color-Magnitude diagram

Cordoni et al. 2018

Vector-point diagram of 
proper motionsThe Color-Magnitude diagramThe Color-Magnitude diagram

Cordoni et al. 2018

Vector-point diagram of 
proper motions

The Color-Magnitude diagramThe Color-Magnitude diagram

NGC2099
Age ~ 500 MyrCMD OF A YOUNG 

CLUSTER 

Cordoni et al. 2018
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Open clusters
Open Clusters in the Galactic disc

Cantat-Gaudin et al. (2018)

Open Clusters in the Galactic disc

Cantat-Gaudin et al. (2018)

~2000 identified

Cantat-Gaudin et al. (2018) 
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Parallax

d*[parsecs] =
1

p(′ ′ )
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Parallax
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For the hands-on sessions

https://github.com/pcamigo/
ML_HEP_school_2025/



Thanks!
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