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Why ML/AI in Astrophysics!?
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Why ML/AI in Astrophysics!?

* Bigger and more complex datasets available (open source). ML is almost a necessity.
And the future will become more demanding (Rubin, SKA).

* Techniques become more popular and better known.

* Availability of better computing infrastructures (GPUs, cloud services) and more
funding for Al-based projects.

* No ethical issues like privacy concerns or biases that may affect other disciplines.

* Success stories involving citizen science projects.
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Astronomical Data
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Astronomical Data: Images and Photometry
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Astronomical Data: Images and photometry

* They are not "photos” like those from regular cameras but maps of light intensity, where each
pixel represents the amount of light coming from a point in the sky.

 Obtained using telescopes equipped with detectors like CCDs (Charge-Coupled Devices).

* Photometry is the precise measurement of the amount of light (flux) emitted by an
astronomical object.

* Performed in specific wavelength bands (e.g., u,g,,i,z from the SDSS photometric system).
* Helps study properties such as:

* Apparent and absolute brightness.

* Temperature and composition of stars.

* Mass distribution in galaxies.
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Astronomical Data: Spectra

* A spectrum is the distribution of light intensity from an astronomical object as a
function of wavelength or frequency.

* Provides detailed information about the physical, chemical, and dynamical properties of
celestial objects.

* Key Features in Spectra:
e Continuum: Smooth emission from the object's surface or gas.

* Absorption Lines: Dark lines where specific wavelengths are absorbed by
elements.

* Emission Lines: Bright lines where specific wavelengths are emitted by hot
gas.
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Astronomical Data: Transient Objects and Time Series
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Astronomical Data: Transient Objects and Time Series

e Variations in the brightness, velocity, or other properties of astronomical objects.

* Periodicity: Repeated patterns in brightness or velocity (e.g., pulsating stars, eclipsing
binaries).

* Transients: Sudden, non-repeating events (e.g., supernovae, microlensing).

* Types of transients:
e Variable Stars: Study pulsating stars (e.g., Cepheids) to measure distances.
 Exoplanet Detection: Detect transits as a planet passes in front of its host star.
* Binary Systems: Measure radial velocity variations to determine orbital parameters.

* Transient Events: Monitor supernovae or gamma-ray bursts.
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Astronomical Data: Simulations
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https://www.illustris-project.org/

Astronomical Data: Simulations

Auriga Simulation
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https://wwwmpa.mpa-garching.mpg.de/auriga/index.html

Astronomical Data: Simulations

* Simulations in astronomy model the evolution and behavior of astrophysical systems using
computational methods and physical principles.

* The purpose is the study of processes that are difficult or impossible to observe directly, such as
galaxy formation, large-scale structure evolution, or star formation.

e How Simulations VWork

* |nput Physics: Include gravity, hydrodynamics, radiation, and feedback processes (e.g., from
supernovae), magnetism, dark matter, and dark energy.

* Numerical Methods: Use grids or particles to represent matter and solve equations governing
astrophysical processes. Common methods include N-body simulations (gravity-dominated)

and smoothed-particle hydrodynamics (SPH) for fluids.

* Scale: Simulations can range from small (e.g., single star) to large-scale cosmological
simulations.
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Astronomical Data: Catalogs
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https://www.cosmos.esa.int/web/gaia/end-of-observations

Astronomical Data: Catalogs

 Collections of data about astronomical objects, including their positions, brightness,
motions, and other properties.

 Object Information: Include coordinates (e.g., right ascension and declination),
magnitudes, distances, velocities, and classifications.

* Large Scale: Modern catalogs can contain millions or even billions of objects (e.g., Gaia
DR3).

* Multidimensional Data: Combine photometric, astrometric, and spectroscopic data.

* Some examples: Gaia, SDSS, 2MASS, APOGEE, Hipparcos, NASA Exoplanets, ....
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How ML/Al is been used in Astronomy

e Classification: Categories or labels are applied to objects or features. Based on a
training set (labeled or unlabeled), the algorithm learns the characteristics that relate

an instance to a category.VVhen applied to a new instance, the algorithm assigns the
most likely category label.

* Regression: Assignment of a numerical value (or values) based on the
characteristics that are learnt or otherwise predicted by the machine learning

algorithm. As with classification, a training set may be used or the characteristics may
be inferred from the dataset.

e Clustering: Determine whether an object or a feature is part of (i.e.,a member of)
something. This might be a physical structure or association—as in the more familiar
usage of the term in astronomy as applied to open, globular, or galactic clusters—or a
region within an N-dimensional parameter space.

Fluke and Jacobs (2019), Surveying the reach and maturity
of machine learning and artificial intelligence in astronomy

Physics without Frontiers: Chile | School of Machine Learning, UTFSM, January |3-17 2025



How ML/Al is been used in Astronomy

* Forecasting: The purpose of the machine learning algorithm is to learn from previous
events, and predict or forecast that a similar event is going to occur. There is an implicit time-
dependence to the prediction

* Generation and reconstruction: Missing information is created, expected to be
consistent with the underlying truth. The cause of the missing information might be due to the
presence of noise, processing artifacts, or additional astronomical phenomena, all of which
conspire to obscure the required signal.

e Discovery: New celestial objects, features, or relationships are identified as a consequence
of the application of a ML or Al method.

¢ Insight: Moving beyond the discovery of celestial objects, new scientific knowledge is
demonstrated as a consequence of applying machine learning or Al. This includes cases where
insight is gained into the suitability of applying machine learning, choice of data set,

hyperparameters, and comparisons with human-based classification.

Fluke and Jacobs (2019), Surveying the reach and maturity
of machine learning and artificial intelligence in astronomy
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Techniques

Data/method ANN CNN GAN SVM DT RF DBSCAN k-NN k-M
Image . o o . o o o

Spectroscopy o . o o .
Photometry o o o o o
Light curve . .

Time series . o o o 5

Catalogue . . o o o o

Simulation . o o o o

Fluke and Jacobs (2019), Surveying the reach and maturity
of machine learning and artificial intelligence in astronomy
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Techniques

Data/method ANN CNN GAN SVM DBSCAN k-NN k-M
Image . o o . o o o

Spectroscopy o . . o "
Photometry o o o o o
Light curve . .

Time series . . o o .

Catalogue . . o o o o

Simulation . o o . "

Most used models!

Fluke and Jacobs (2019), Surveying the reach and maturity
of machine learning and artificial intelligence in astronomy
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VVell-Established Applications

Classification and forecasting of solar flares. Segmentation for identification of umbra/penumbra/
photosphere in the solar surface.

Identification of candidates to extrasolar planets from stellar lightcurves (Kepler)

Stellar and photometric classification of stars, leading to finding new objects of specific types of stars (WR, hot
sub-dwarfs, etc).

Classification of galaxies from optical and radio imaging surveys. Prediction of physical properties from

emission-line spectra. ldentification of galaxies undergoing a special evolutionary phase as predicted by
simulations.

Identification and classification of transient objects.

Accurate estimation of distance to extragalactic objects from photometric information (photometric redshift).

Identification of systems affected by gravitational lenses in wide-area surveys

Discriminating noise from signal in the detection of gravitational waves.
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Progressing Applications

* Reduction of false detections from the moving objects detection pipelines.
Detection and classification of asteroids.

* Assigning morphological types to radio-detected AGNs.

e Ildentification of blazar candidates in catalogues of high-energy sources (Fermi-
LAT)

* Detecting high-redshift extremely luminous quasars
 Discriminating populations of BAL QSOs from non-BAL QSOs

e Examination of the output of cosmological simulations to connect physical
properties of galaxies, dark matter halos and the cosmic environment.

o Classification of DM sub-halos. Assignment of galaxies to halos in simulations.
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Emerging Applications

 Classification of atmospheric features on the Surface of Mars aiming at predicting
dust stormes.

 Discovery of previously unknown impact craters.

e Study of the ISM in our Galaxy. Spatial or chemical clustering of components in
atomic and molecular clouds.

e Determination of dust reddenning in millions of stars, with application to GAIA
data.

e Discovery of new open clusters from overdensities in GAIA DR2 data

* Ildentify faults in telescope drive systems that can be tackled in real time with
automated expert systems
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Some examples...
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Goal: Train a model to classify the morphology of galaxies based on

Galaxy ZOO their images

Datasets (> 300.000 galaxies):
e Sloan Digital Sky Survey (APO, US, 2.5m)

 Dark Energy Camera Legacy Survey (DECaLS) (V.
Blanco Telescope, Chile, 4m§,

 Hawaii H20 Survey (Subaru Telescope, US,
8.2m)

e Cosmic Evolution Early Research Science
(CEERS) with JWST (Space, 6.5m)

Methodology:
* Train a classifier with labelled data

- e Labels are put by thousands of volunteers with
GALAKY 00 no specific field knowledge

Results:

Few have withessed what you're about to see

Experience a privileged glimpse of the distant universe as observed by the SDSS, CTIO and VST.

e 7.5M classifications(!) from which 140.000 get > 30 classifications

) { 4 ’ - ".‘;‘Av ',. 3 v !
Classify Galaxies R e Robust classifications
To understand how galaxies formed we need your help to g L _‘ - N & {

classify them according to their shapes. If you're quick,
you may even be the first person to see the galaxies

poure et sty ;’ - e Some work to be done to flag misclassifications
* This enabled producing >75 publications 2008-2023
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Zca [kpc]

Discovery of new clusters in the Galaxy

Y [kpc]

2.5

Goal: |dentify new open clusters within the Galactic
disc using Gaia DR2 data.

Methodology:

v TR * Applied a clustering algorithm (DBSCAN) to Gaia
¥ | DR2 astrometric data.

* Validated findings with color-magnitude diagrams and
proper motion analysis.

5.0 7.5 10.0 12.5 15.0 17.5 20.0

Results:

ea T e Discovered 582 new nearby open clusters

Ty iAo

@R * Confirmed the existence of these clusters through
e 53,;“ independent methods.

SR A TS * Enhanced understanding of the Galactic disk's
: b | structure.

S xea Huﬁfi’ng'fé‘l':open clusters in Gaia DR2: 582 new open clusters in the Galactic disc (Castro-Ginard et al., 2020)
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https://www.aanda.org/articles/aa/full_html/2020/03/aa37386-19/aa37386-19.html

Planet Hunters TESS @

@ Planet Hunters TESS @

Goal: |[dentify exoplanets by using the
transit method.

ANET HUNTERS TESS

Data: Lightcurves observed with dedicated
space missions: Kepler or TESS

Method:

PL

* Build a classifier that automatically
identifies potential candidates

* Volunteers help to identify tricky or |
borderline patterns, suggesting a -
classification (variable star, data glitch,
potential planet) o

Results: More than 100 new planetary L _ . .
systems identified in Kepler data e T
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What’s next! Tons of data!!!

Vera Rubin: Massive data TR

processing in (near) real / | \
life! VERA C.RUBIN
OBSERVATORY

 Cover all the visible sky every
2-3 nights (~20TB per night)

e Exhaustive study of the
transient sky. About |10 million

of alerts per night (20.000 alerts
per minute)

e Latency of alert: 60 seconds
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What’s next! Tons of data!!!

. !":. ".:"“"Q:V ~‘ "!‘“"“‘ ')‘?‘ mﬁ
38T rof &’@&r%.‘ i‘é:’ca“!'? ":".

SKAO: World’s largest radio observatory
* The SKA will detect hundreds of millions of astrophysical systems

* Expected to generate 600 PB/year
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Challenges

e Scalability: Ensuring Al methods can handle the exponential growth in data volume.
e Data Quality: Dealing with noisy, incomplete, or biased astronomical datasets.

 Computational Resources: Making Al accessible for institutions with varying
computational capabilities.
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Hands-on Sessions

* Wednesday: Membership determination in open clusters using
DBSCAN

 Thursday: Photometric redshift using Decision Trees, Random Forest
and Neural Networks
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Membership determination in open
clusters using DBSCAN

Basic concepts
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Clustering

Clustering is the grouping of objects into a "cluster” such that they are similar (or
related) to each other and different (or unrelated) from objects in other clusters.

A successful clustering scheme is LA .8
one where the distances between ° , o
clusters are large, and the

distances within a cluster are
small.
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Density-based clustering

Density-based clustering algorithms, such as DBSCAN, identify clusters by finding
areas of higher density in the data. This allows them to work with arbitrarily
shaped clusters and automatically determine the number of clusters.

The operation of DBSCAN is controlled by hyperparameters: the proximity threshold
that defines cluster density (eps) and the minimum number of samples in a cluster
( ). Finding the optimal values for these hyperparameters is challenging

(similar to finding the optimal k in K-means) because tuning hyperparameters in
unsupervised algorithms is not straightforward.

This method is particularly useful for identifying outliers.

Nice visualization in https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Physics without Frontiers: Chile | School of Machine Learning, UTFSM, January |3-17 2025


https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

DBSCAN pseudocode

For each unassigned example Xx;:

¢ (Check whether there are at least ngy, poilnts within a dis-
tance of € (that 1s, whether the sample 1s a core sample) ;

e Tf ves, 1mplement the "expand the cluster" sequence.

"Expand the cluster" sequence:

e Assign all samples within distance € of the current core
sample to cluster;

e For each newly assigned neighbor x; that 1s a core point,
implement the "expand the cluster" sequence around ;.
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DBSCAN example

£ = 0.20; estimated number of clusters 7
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£ = 0.30; estimated number of clusters 2
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£ = 0.25; estimated number of clusters 3
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Herztprung-Russell and Color-Magnitude diagram
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Herztprung-Russell and Color-Magnitude diagram
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https://www.youtube.com/watch?v=mY2edzGYWyU

Stellar evolution and the HR diagram

* Main sequence (MS): Core hydrogen
burning phase. Longest phase of evolution

105 Asymptotic
* Turn-Off: Hydrogen exhausted in core. Giant Branch
~ 10 g, -
* Red Giant Branch (RGB): Hydrogen 7 iy S , IS St
o . . = Horizontal Branch / Branch
Burning in shell around inert helium core. = 1021 )
5 s
e RGB tip: end of the RGB S 1+
g exhaustion
e HB (RC): Helium burning in the core — 1027
(details depends on the mass loss)
10 44~
. . I I I I
* Asymptotic Giant Branch (AGB): He T40000 20000 10,000 5000 2,500
burning in shell around an inert C/O core. Temperature (K)

Complicated mass dependent evolution
from now on.
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Stellar evolution and the HR diagram
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Most of the massive stars are in the MS, while low-mass stars are in the T-Tauri stage
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Stellar evolution and the HR diagram
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O-type stars have exhausted all their hydrogen and evolve off the MS
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Stellar evolution and the HR diagram
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O-type stars exploded as supernovae, while B-type stars evolve off the MS
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Stellar evolution and the HR diagram

T = 10 years -
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B-type stars that are sufficiently massive explode as supernovae, while
the rest evolve into red giants. A-type stars begin to leave the MS
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Stellar evolution and the HR diagram

A Horizontal
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OBAFG-type stars have evolved off the MS, the giant branch is heavily populated, and there
are already several white dwarfs.The MS is primarily composed of K and M-type stars
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CMD of star clusters

A star cluster is crucial for understanding stellar evolution because historically, they are
considered simple stellar populations (SSPs):

e All stars form at the same time (same age).
e All stars have the same composition.

e All stars are at the same distance.
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Density: 0.1 — 10% stars pc™

Core radii: ~ 2 pc
Mass: 10° — 10’

Age: 0.01 — 10 Gyr
Median age: 0.3 Gyr
Gravitationally bound
Chemically homogeneous
No gas left

Almost coeval

Location: Galactic disk
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Open clusters
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Open cluster membership
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Open clusters
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Parallax
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For the hands-on sessions
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https://github.com/pcamigo/
ML HEP school 2025/



PhVSi_Cs With_OUt | ’ 13-17 JANUARY 2025 | VALPARAISO, CHILE
Frontiers: Chile S

School on maCh'i‘ne_Iearning in physics

‘. s . ,'_‘fhysiciwithogt Frg*ti;e'r"s:C.hile, choo] of Machine Le‘arning;'-UTFSM,Ja'nuary 13-17 2025




