

Physics Without Frontiers: Chile

School on machine learning in physics

Al/ML Applications in Astrophysics

Pía Amigo Departamento de Física, USM <u>pia.amigo@usm.cl</u>

Physics without Frontiers: Chile | School of Machine Learning, UTFSM, January 13-17 2025

13-17 JANUARY 2025 | VALPARAÍSO, CHILE

Outline

- Regression problems
- Evaluate and improve your model
- Trees and forests
- Photometric redshift

Regression problems

- In regression problems the prediction is a continuous variable (instead of a class)
- It finds the best-fitting line (plane/hyperplane) that describes the relationship between the variables.
- The linear regression predicts the values $\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k$
- We need to find the set of parameters β that minimizes the loss function Mean Square Error

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

Cross-validation

- The choice of training/testing sets can significantly affect model performance
- We want to estimate the uncertainty associated with the statistical variability of the data
- **Cross-validation** is a technique used to evaluate the generalization ability of a machine learning model, i.e., how well it will perform on new or unseen data.
- Its main goal is to prevent the model from overfitting the training set
- The **k-fold** technique is commonly used, but there are other variants, such as **Leave-One-Out** and **Stratified k-fold.**

K-fold Cross-validation (visual explanation)

		Fold 1	Fold 2	Fold 3
	Split 1	test	train	train
	Split 2	train	test	train
Train data	Split 3	train	train	test
	Split 4	train	train	train
	Split 5	train	train	train

K-fold Cross-validation (visual explanation)

- We use all training data (all objects are equally represented
- The mean and standard deviation give us an idea of the average performance and uncertainty
- Of course, it takes more time

• How many k? 5-10 is recommended, depending on how long it takes for the model to run.

Diagnosing an ML algorithm

BIAS

The algorithm cannot capture the complexities in the underlying relationships between variables

UNDERFITTING

VARIANCE

The algorithm is fitting all the small variations in the training data and cannot generalize

OVERFITTING

Diagnosing an ML algorithm

Not complex enough (high bias/underfitting)

Good trade-off between complexity and performance

Too complex (high variance/overfitting)

Model Complexity

Error

 ${\mathcal X}$

High bias vs high variance

High bias: train and test errors are similar

High variance: there is a gap between test and train error because the algorithm does not generalize well

https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html

How can we improve the model?

HIGH BIAS

- Using different features
- Creating new features
- Trying new parameters or more complex algorithms

HIGH VARIANCE

- Reducing the number of features
- Trying less complex algorithms

We can also check if we need more data

Learning curves

Algorithm performance for training and testing sets as a function of training set size

training set size \longrightarrow

Decision trees

- It works by splitting the data based on different values of the variables or features.
- If the variables are categorical, the split is based on yes/no.
- If the variable is numerical, the split is based on a certain value
- They are easy to interpret and visualize.

How do we separate the classes in this dataset with two features?

How do we separate the classes in this dataset with two features?

How do we separate the classes in this dataset with two features?

Nodes define the decision tree

Split node

Terminal node

At a terminal node (leaf), the model has completed the classification (and all objects in that leaf belong to the same class)

Decision trees for regression

- At each node, the feature and threshold that minimize the MSE in the resulting groups are chosen. The split is performed recursively until a stopping criterion is met (e.g., maximum depth, minimum observations per node).
 - For each possible split:
 - The mean of the target variable is calculated for each group.
 - The MSE is measured as the average of the squared differences between the values and the group mean.
 - The split that minimizes the total MSE (weighted average) is selected.
 - The prediction for a new observation is the mean value of the target variable in the leaf where the observation falls.

Decision trees for regression

- Fast
- Interpretable
- Low bias
- They usually tend to overfit

(high variance)

https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html#Decision-Tree-Levels

depth=5

We need to "prune" the tree to remove the smallest leaves. min_impurity_decrease, min samples split, min_samples leaf, max_depth

Ensemble methods: Random Forests Tree 1 Forest

- will be built on each of the M training sets.
- a random subset of all available features.
- element in the training set.

• The final prediction is simply the average of all predictions (for regression) problems) or the majority vote (for classification problems).

• The original dataset is replicated M times using bootstrap sampling with replacement. A decision tree

• When creating the M decision trees, the features participating in the selection of the optimal split are

• The M decision trees are constructed independently, and each tree provides a prediction for each

Hyperparameters optimization

Decision Trees (DT):

- max_depth: Maximum depth of the tree (controls over/underfitting).
- min_samples_split: Minimum samples to split a node.
- min_samples_leaf: Minimum samples in a leaf node (prevents small leaves).
- max_features: Number of features to consider for the best split.
- criterion: Metric for split quality (mse, gini, entropy).

Random Forests (RF):

- Inherits DT Hyperparameters.
- n_estimators: Number of trees in the forest.
- bootstrap: Use bootstrap sampling (default: True).
- max_samples: Number of samples per tree (if bootstrap=True).
- max_features: Features considered for splits (sqrt, log2, None).

Neural networks

PLAYGROUND.TENSORFLOW.ORG

hidden layer

A 3D map of the universe

Distance Ladder

Parallax of Cepheids in the Milky Way

NEW

PARALLA + KIMI

Earth, Dècembér

Sun

0 -10 K u

10 Thousand - 100 Million Light-years

Galaxies hosting Cepheids and Type la supernovae

Distant galaxies in the expanding universe hosting Type la supernovae

Light redshifted (stretched) by expansion of space

100 Million - 1 Billion Light-years

Spectroscopic redshift

wavelength (nm)

Expansion of the universe

+1000 KM

500KM

 $V = H_o d$

The universe is expanding!

Expansion of the universe

Accelerated expansion!

Large-scale structures in the Universe

The problem...

Spectroscopy is expensive, and you ne measure the redshift

High signal-to-noise ratio to define the continuum and to measure faint lines

• Spectroscopy is expensive, and you need enough resolution and good quality data to

The problem...

Spectroscopy is expensive, and you ne measure the redshift

High resolution

• Spectroscopy is expensive, and you need enough resolution and good quality data to

Low resolution

Easier way...photometry!

Photometry is more available for much larger samples
Can we predict redshift based on photometric information?

Find out this afternoon in the hands-on session!

