Smith Purcell Effect Emission Determination (SPEED) Final Presentation

SPEEDers: Richard Chen¹, Niranjan Nair², Jaiden Li¹, Samyak Jain¹, Robert Zhu¹, Theo Buckridge¹, Hari Palaniyappan¹, Daniel Lin¹

Mentors: Antoine Laudrain³, Antonios Athanassiadis³, Marcel Stanitzki³, Daniel Donovan¹, Cynthea Givens¹

¹ Andover High School, Andover, MA 01810, USA

- ² Massachusetts Academy of Math and Science, Worcester, MA 01605, USA
- ³ Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22603 Hamburg, Germany

HELMHOLTZ

What is Smith-Purcell Radiation?

Smith-Purcell Radiation: Radiation that is generated from charged particles moving closely parallel to a conductive periodic grating

Overview of our Experiment and our Work Here

Original Goal: Measure intensity of Smith-Purcell radiation (SPR) with variable period gratings

- We had to:
 - Understand the detector
 - Analyze data to differentiate photons from noise
 - Optimize grating configuration
 - Correlate data from the beam telescope with the silicon Photomultipliers (SiPMs)
- To do this, we learned:
 - Organization, teamwork, and project management
 - Many bits and pieces of statistics
 - How to acquire and analyze data

SPEEDers

Final Experimental Setup

- **Collimator** to truncate beam size
- Scintillators to measure electron count and trigger events
- Beam telescopes to measure beam position and trajectory
- Blazed gratings positioned 100 microns from center of beam
 - To create and maximize radiation, the beam must pass closely parallel to the grating
- Four **SiPMs** to measure SPR intensity at multiple angles, angles measured via **goniometer**

SPEEDers

Final Experimental Setup

SiPMs: Introduction & Testing

- Introduction:
 - SiPMs convert photons to electric signals
 - 3x3 mm sensitive area of photon-detecting cells
 - Compared two types of SiPMs using a digitizer to measure waveforms
- Aims: Learn SiPM signal response, maximize Signal to Noise Ratio (SNR)
- BGO scintillator and lead glass:
 - Used BGO scintillator and lead glass to calibrate SiPMs
 - Signal observed by SiPMs with BGO scintillator produced large signal

SiPMs: Noise Measurements

- Noise sources:
 - Dark count: random firings of SiPM pixels identical to single photons
 - Electrical equipment
- Overvoltage scan:
 - Overvoltage leads to more gain and dark count
 - Tested various voltages before determining 44 V
- Dry ice:
 - Dry ice had significant reduction (~50-75%) on first SiPMs
 - Had little effect on second SiPMs, less noisy overall

SiPM Dry Ice Noise Comparison

SiPMs: Single Photon Spectrum

- **Aim:** Detect single photons from other sources to identify SPR
- Beam energy scan with lead glass:
 - Lower beam energies produce less photons
 - Too many photons produced, could not see single photons
- Single photon trials with LEDs:
 - Used LED pulser to try to produce single photons
 - Same results as above

DESY.

SiPMs: Addressing Challenges

- High noise levels:
 - Difficulty with single photon detection
 - Clouded potential SPR signal waveforms

- Noise filtering:
 - Trigger logic with beam telescopes
 - SNR cutoff, low pass filters

Run 371 Event 1818 - Closely parallel

DESY.

Beam Telescopes: Introduction & Alignment

- Aim: Select electrons passing closely parallel to grating, align grating with beam center
 - Beam telescopes record electron tracks with high precision
- Alignment:
 - Proper alignment required for all analysis
 - Alignment in 2 translations and 3 orientations
 - Took initial measurement of telescope Z positions

Beam Telescopes: Alignment

Alignment procedure:

- 1. Take beam data with nothing in between planes
- 2. Straight line track reconstruction
- 3. Check global residuals and χ^2

Repeated over 200 iterations with same data

Beam Telescopes: Electron Tomography

- **Aim:** Tomography tests and grating alignment
 - Tomography shows roll and placement of grating \rightarrow more accurate than stage adjustments
 - Orientation of grating successfully aligned

Beam Telescopes: Beam Spread & Center of Distribution

- Aim: Orient grating in beam center & calculate beam spread with different collimators
- Hitmaps: spatial distribution of electrons detected by each sensor
- **Beam center** \rightarrow Mean of hit distributions in x and y
- **Beam spread** \rightarrow Standard deviation of the hits
- Aligned grating 0.4mm under beam center

14

Trigger IDs: Introduction

Event IDs:

- The beam telescope and digitizer are not synchronized
- The digitizer doesn't record every event (longer dead time)
- Aim: match the events between the two detectors

Trigger Logic Unit (TLU):

- **Problem:** communicates the trigger ID with the telescope but not the digitizer
- Solution: send the digitizer an analog bitstream and a clock encoding the trigger IDs

SPEEDers

Trigger IDs: Converting to Binary

16

SPEEDers

Trigger IDs: TLU (Clock and Analog Bitstream)

- Problem: The clocks are not aligned from event to event

17

Trigger IDs: Aligning the Clocks

Solution: Aligned all of the clocks to the first <u>falling edge</u>

def get_falling_edges(

clk_wf: np.ndarray, threshold: float = 0.15) -> List[np.ndarray]: """Get the time indices of the falling edges of a clock-like waveform.

See `get_rising edges` for a detailed explanation

Args:

clk_wf (1D np.ndarray): array of the clock waveform. threshold (float, optional): fraction of the maximum gradient used to determine where the rising edges are.

Returns:

List[np.ndarray]: each element of the list is an array containing the time points corresponding to one rising edge.

```
....
```

```
grad = np.gradient(clk_wf)
# print("grad min/max amplitude:", grad.min(), grad.max())
```

```
edges = grad < grad.min() * threshold
splits = np.nonzero(edges[1:] != edges[:-1])[0] + 1
time_points = np.arange(clk_wf.shape[-1])
sections = np.split(time_points, splits)
```

```
return [time_points[s] for s in sections
    if grad[s].mean() < grad.min() * threshold]</pre>
```


Trigger IDs: Bit Shifts

- **Problem:** Bit Shifts occur when the clock is shifted enough that we align it to the wrong falling edge.
- Solution:
 - If current ID > 2 × previous ID, we shift it to the left (*half it*)
 - If current ID < previous ID, we shift it to the right (*double it, unless it is odd*)

DESY.

Trigger IDs: Bit Overflow

- **Problem:** TLU can only send up to $2^{16} 1 = 65535$
- Our data sets contain hundreds of thousands of events
- **Solution:** Afterwards, 65536 is added to each entry once for each time it has looped before that point

Trigger IDs: Filtering Trigger IDs from beam telescope data

- Converting between Trigger IDs and Event IDs
 - Necessary to match telescope and SiPM data
- Event Selection for SPR detection:
 - Identifying events with high signal amplitude from SiPM data was inefficient
 - Filtering for electrons that pass closely parallel to grating on telescope → checking event on SiPM data

Final Setup Planning

- Parameters:
 - Collimator: 2x2 mm
 - Beam energy: 1.0 GeV
 - Dry ice: initially tested, decided to not use
 - Color filter: not used, deemed unnecessary
 - Goniometer angle: varied between -22° and -34°
 - Grating groove density: varied between 1200 g/mm, 1800 g/mm, and 2400 g/mm

Data Analysis

Data Analysis and Results

Scintillator

Amplitude vs. Time Histogram: Scintillator vs. Grating

Grating

Data Analysis and Results

Integral of Signal Amplitude vs. Signal Amplitude: Scintillator vs. Grating

Conclusions and Future Research

- Identified noise and attempted to identify single photons of SPR in SiPMs
- Aligned grating and found beam center/spread using beam telescopes
- Created trigger ID reconstruction system with TLU in order to correlate SiPM events and beam telescope paths
- Tested different grating groove densities and goniometer angles in 1.0 GeV beam
- Data analysis finds high noise in SiPM data, difficult to identify single photons of SPR
- Future data analysis: look at difference in closest events to grating vs. furthest events

SPEEDers

- Outreach
 - Documenting our experience to inspire other students
 - Instagram, Website, Blog
 - Improving science curriculum
- Cool things we've seen
 - XFEL
 - HERA
 - ARGUS
 - ALPS
 - Hamburg City Center
 - Miniatur Wunderland

