Smith Purcell Effect Emission Determination (SPEED) Presentation

SPEEDers: Richard Chen¹, Niranjan Nair², Jaiden Li¹, Samyak Jain¹, Robert Zhu¹, Theo Buckridge¹, Hari Palaniyappan¹, Daniel Lin¹

Mentors: Antoine Laudrain³, Marcel Stanitzki³, Daniel Donovan¹, Cynthea Givens¹

¹ Andover High School, Andover, MA 01810, USA

² Massachusetts Academy of Math and Science, Worcester, MA 01605, USA

³ Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg, Germany

Meet the Team

We are team SPEEDers, a group of 11th and 12th graders who are passionate about physics

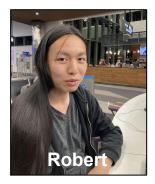
- 7 members and 2 teachers from Andover High School, Andover, MA, USA
- 1 member from Massachusetts Academy of Math and Science, Worcester, MA, USA
- We want to be active in physics research instead of being observers to it

Follow our journey on Instagram @bl4s_speeders!

Thank you BL4S, DESY, and CERN!



Meet the Team (ctd.)


- 12th grader at AHS
- Likes playing piano and trombone, cats, crochet, and cooking
- Interested in space physics, geophysics, and particle physics
- 12th grader at AHS
- Likes learning languages, writing, and playing piano (favorite German word is Liebestraum!)
- Interested in CS, Linguistics, and astronomy

Niraniar

- 12th grader at AHS
- Plays cello and has been doing Taekwondo for 14+ years
- Tutors math and physics subjects in free time
- 11th grader at MAMS
 Enjoys reading, philosophy, and jazz piano
 - Favorite subjects are physics and CS

Meet the Team (ctd.)

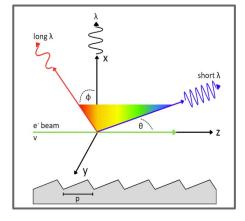
- 11th grader at AHS
- Plays clarinet, piano
- Likes a bunch of things math, physics, history, economics, linguistics...

- 11th grader at AHS
- Plays the electric and double bass
- Section leader of pit percussion in the AHS marching band
- Favorite subjects are math and physics

- 11th grader at AHS
- Plays trumpet, learning tuba, currently singing in a hardcore band
- Likes philosophy, reading, computer science, anthropology

- 11th grader at AHS
- Plays the guitar and piano
- CEO of Loclo
- Love walking my dog and making stuff

Meet the Team (ctd.)


- AHS Physics Teacher
- Plays flute & piano
- Has 12 (+) grandchildren
- Loves to read and knit!

- AHS Physics Teacher
- Former US Navy Nuclear Engineer
- Enjoys hiking, has hiked in Austrian Alps, Colorado Rockies, New Hampshire White Mountains ...

Introduction & Background

- **Smith-Purcell radiation (SPR)** is the radiation emitted by a charged particle traveling closely parallel to a blazed, metallic grating
- Discovered by Edward Purcell and Steve Smith in 1953 (Purcell & Smith, 1953)
- Has been used as a form of beam diagnostic (Blackmore et al., 2009)
- Inspired by previous BL4S winners who studied Cherenkov (2020) and Transition radiation (2021)
- Builds upon previous research of SPR at DESY (Kube, 2004)
 - Problems with gratings, longer wavelengths

DESY.

Why SPR?

- SPR holds potential for beam diagnostics and has been previous studied in GeV energies (Blackmore et al., 2009, Kube et al., 2003, Sergeeva et al., 2017)
 - Coherent vs. incoherent SPR: Bunch length > wavelength of radiation at DESY, expected to produce incoherent SPR
- Advantages of SPR:
 - Non-invasive technique to measure longitudinal beam profile
 - Can create radiation from soft x-rays to far IR spectrum
- Difficulties of SPR:
 - Less investigated than other forms of diffraction radiation
 - Low expected photon count at ultra relativistic velocities

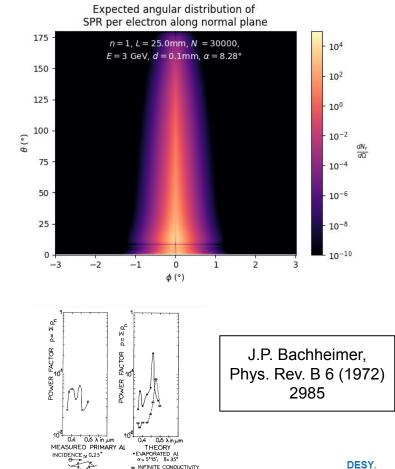
Experimental Overview

Experimental goals:

- Characterize SPR using DESY II electron beam for non-invasive beam diagnostics
- Evaluate intensity of radiation using different blazed grating periods

Project specifications:

- Four 25x25x6mm blazed gratings with periods of 278-833nm positioned ~0.1 mm from center of beam
- Primary/secondary collimators to narrow beam width
- Six beam telescopes to measure beam positioning/path
- Five silicon photomultipliers (SiPMs) to measure SPR intensity at multiple angles, angles measured via goniometer
- **Color filters** to measure wavelengths of emitted radiation


Grating ID#	n (grooves/mm)	<i>p</i> (nm)
1	1200	833
2	1800	556
3	2400	417
4	3600	278

Expected Challenges

- Not currently simulated in GEANT4
 - Conflicting theories (surface current vs Van Den Berg) for photon production rate relative to grating

SPEEDers

- Experimental Setup
 - Detection efficiency of SiPMs and PMTs
 - Precision of relative height of beam
- Low expected photon production
 - Wide beam (~5mm vs. ~0.1mm)
 - Low particle rate (~40 kHz)
 - Effects from relativistic e⁻ velocities
- Effect of conductivity unknown
 - Many papers assume infinite conductivity; not realistic

