

Higgs physics on the edge

Torben Lange (KBFI Estonia) BL4S 2024 | CERN 20.09.2025 torben.lange@cern.ch

Euroopa Liit Euroopa Sotsiaalfond tulev Euro

1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1

Siseministeerium

Eesti Teadusagentuur Estonian Research Council

RVTT3 & TK202 "Fundamental Universe"

- Torben Lange a particle physicist
- Studied in Hamburg 2012-2022 (B.Sc. PhD.)
- Worked half a year at CERN (2018)
- Moved to Tallinn end of 2021 as a PostDoc
- Currently senior researcher in Tallinn, Leading the <u>CMS</u> analysis efforts in Estonia @<u>KBFI</u>
- Mostly focused on rare <u>Higgs boson</u> processes since 2015 and <u>Di-Higgs</u> production since 2019

Torben Lange (KBFI Estonia) | BL4S 2024 | CERN 20.09.2025 | torben.lange@cern.ch

Credit: CERN (Daniel Dominguez, Arzur Catel Torres)

- Explaining the world via the interaction of the smallest particles
- Similar to periodic table in Chemistry, we have the Standard Model (SM)
- Matter is made up of leptons and quarks (fermions) interacting via bosons
- These interactions explain three our of four main forces: weak, strong and electromagnetic

- Electromagnetic force: Everyday life from chemistry to magnets and electricity, binds electrons to atomic nuclei, also the reason why you don't fall through the floor
- Strong force: Binds atomic nuclei together counteracting the electromagnetic force on small scales -> strong
- Weak force: Radioactivity and fusion, allows fundamental particles to change e.g muon->electron or up -> down quark, this leads atoms to decay but also allows for fusion inside stars

- Behind all of this is a lot of complicated math
- Simple interactions can be several dozen pages of integrals worth of math in the lowest order approximation
- Thankfully for experimentalist like me, we can draw Feynman diagrams out of easy to understand building blocks that correspond to precomputed integrals
- Theory gives us rules how to draw these, what processes to expect and at which rate

How do we learn (more) about all this?

How do we learn (more) about all this?

Example: Searching for a new particle / Dark Matter

How do we learn (more) about all this?

- We collide particles such as protons (hydrogen) nuclei), electrons, positrons and muons at particle colliders
- The resulting collisions produce an explosion of hundreds to thousands of particles recorded by our experiments such as CMS
- We then analyze these "events", reconstructing different particles coming out of the collision

- Based on this reconstruction, we can select a certain class of events we are interested in e.g. based on the number and energy of the resulting particles
- For this selection using statistic methods we then can compare the probability of different hypotheses I.e if its more likely that a certain process is present or not
- Example from the video: Higgs boson discovery

Torben Lange (KBFI Estonia) | BL4S 2024 | CERN 20.09.2025 | torben.lange@cern.ch

CMS CMS Experiment at LHC, CERN Data recorded: Tue Aug 1 00:12:10 2017 CEST Run/Event: 300233 / 11237565 Lumi section: 53 Anti Tau Electron. pt = 25.62 pt = 92.99 Work in Progress eta = 1.129 eta = 2.094 phi = 1.084 phi = 2.381 Recoil Jet et = 195.45 eta = -1.532 phi = -3.072 Electron, Anti Muon pt = 45.12eta = 1.578 phi = -0.940 phi = -0.53 Credit:Thesis <u>T.Lange</u>

- Based on this reconstruction, we can select a certain class of events we are interested in e.g. based on the number and energy of the resulting particles
- For this selection using statistic methods we then can compare the probability of different hypotheses I.e if its more likely that a certain process is present or not
- Example from the video: Higgs boson discovery

Torben Lange (KBFI Estonia) | BL4S 2024 | CERN 20.09.2025 | torben.lange@cern.ch

Weighted

S/(S+

- We usually have two type of colliders, hadron colliders like the LHC and lepton colliders
- Hadron colliders use composite particles like protons at the highest energies allowing to probe all sorts of physics and with a large amount of data
- Lepton colliders on the other hand, while featuring lower energy, offer "cleaner" collisions, allowing for easier to analyze events and subsequently high precision
- I.e Discovery vs. precision machine

- To achieve the high energies at the LHC, a whole chain of accelerators is needed
- LHC is a circular collider, allowing to collide packages of particles repeatedly at a high rate
- This is not possible with leptons (at these energies) due to energy losses for lighter particles $m_{proton} > m_{electron}$

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Material CHARM Cern High energy AcceleRator Mixed field facility IRRAD proton IRRADiation facility GIF++ Gamma Irradiation **CENF** CErn Neutrino platForm

- LHC collides these packages of 10^{11} protons more than 600 million times per second at each interaction point/experiment
- In each of these crossings up to 70 actual proton-proton collisions happen
- Of these we read out about 100k/s and record/ analyze a few 100/s
- Trigger recognizes interesting events to read out/ record and make the amount of data manageable

- The CMS experiment sits at one of the LHCs collision points
- Together with ATLAS one of the "general purpose" experiments
- ALICE and LHC-b more focussed on specific physics (In interactions and b-quarks/jets)

- Collisions produce hundreds/thousands of particles
- Higher energetic ones travel through most of the detector outward from the collision point
- Depending on their interactions with different parts of the detector we can identify them
- Similar to the detectors you have seen: Trackers + Calorimeters, Magnet to bend charged particles

Credit: CMS

- Depending on the processes we are interested in, different particles are produced, most of them decaying almost instantly
- However, combining the different particles we can reconstruct, we can also reconstruct these fast decaying ones that produced them (or the ones that produced them, like the Higgs: H->WW-> $\mu\mu$ + Neutrinos)

Credit: CMS

- Often we use machine learning (ML) both for both reconstruction of these particles as well as identifying events of interest
- I.e events that more likely contain our process of interest (signal) compared to other processes (background)
- To store/analyse all these events, produce simulation for signals and backgrounds that help us in terpreting our results and train said ML, we distribute data around the whole globe

Credit: CMS

Lets watch again and see if we understand better!

Questions so far?

Torben Lange (KBFI Estonia) | BL4S 2024 | CERN 20.09.2025 | torben.lange@cern.ch

Credit: CERN (Daniel Dominguez, Arzur Catel Torres)

Higgs boson?

- Fundamental part of the SM
- For a self consistent model fermions and bosons should be massless
- Particles however have mass -> We need an additional ingredient
- The Higgs mechanism provides that and after long search the corresponding boson was found in 2012 leading to a Nobel prize five decades after its inception!

Higgs boson?

- Last fundamental particle found so far
- Well known by know, meany quantities measured
- If there is more we need to look at some of the rarest processes known to mankind
- 2000 times rarer than the production of a single Higgs, we have the simultaneous production of two (O(4000) in 3 years compared to 600 mio/s)
- These events tell us about the Higgs boson self coupling, the underlying Higgs potential and the future of the universe!

Higgs boson pairs?

Higgs boson pairs?

Credit:Thesis <u>T.Lange</u>

Higgs boson pairs?

Torben Lange (KBFI Estonia) | BL4S 2024 | CERN 20.09.2025 | torben.lange@cern.ch

Credit: <u>CMS+ATLAS</u>

Group Head

We also have a large theory group working on particle physics, astronomy and gravitational waves, feel free to contact us for more information!

Postdocs and PhD. students

Torben Lange (KBFI Estonia) | BL4S 2024 | CERN 20.09.2025 | torben.lange@cern.ch

KBFI experimental HEP group

Joosep **Senior Scientist**

Lauri

IT/Computing

KBFI experimental HEP group CMS Data analysis, on the hunt for more Higgs!

KBFI experimental HEP group ML+GAIA, on the hunt for Dark Matter!

KBFI experimental HEP group Particle reconstruction with ML - hunting the architecture for all!

KBFI experimental HEP group L1 trigger development, hunting the speed limit!

Conclusion

- Particle physics == Understanding the interaction of the smallest particles with the fundamental forces dictating life
- We do that e.g. though collider experiments such as lacksquareCMS at the LHC
- Still, not all mysteries are solved, we know our current models are not complete
- Looking for the Higgs might be one way to find the next puzzle piece
- We have a lively particle physics community in Estonia • and we are doing our part in the quest of understanding mother nature and the universe!

