

RD50 HV-CMOS Meeting

DESY Test Beam Apr. 24 It's about time (and charge)

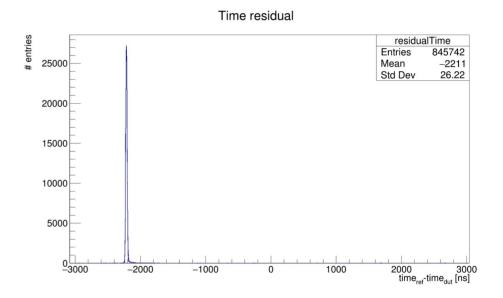
Bernhard Pilsl

Methods Timing Analysis

• Goals:

AUSTRIAN CADEMY OF

- Calculate time residuals (t_{Track} t_{DUT})
 - σ corresponds to time resolution
- In-time-efficiency
 - Cut on DUT-cluster-time; Discard hits at DUT with $t_{DUT} \notin (t_{Track} x \text{ ns}, t_{Track} + x \text{ ns})$
- What time to use?
 - Timestamp of DUT
 - <u>Utilize TS-LE</u> in combination with overflow counter (MPW4 output sampled by FPGA)
 - TLU clock counter based on 25ns clock of TLU (sampled by FPGA)
 - Timestamp of track
 - Timestamp from Telepix
 - Timestamp of TLU

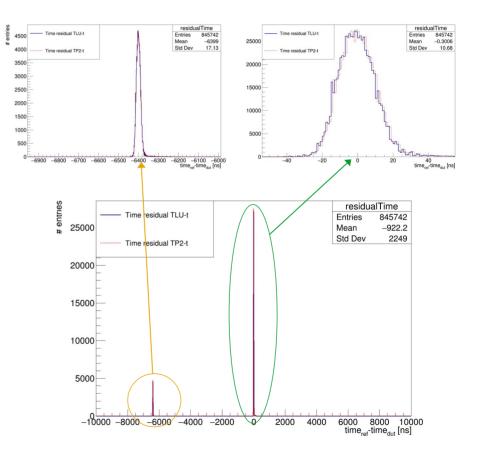


AUSTRIAN ACADEMY OF SCIENCES

Time Offset

- Time residuals show offset of $\sim 2.2 \mu s$
- $t_{MPW4} > t_{Track}$
- Possible systematic error due to measurement setup
- From now on offset corrected with "time_offset" parameter in Corry geo file

3

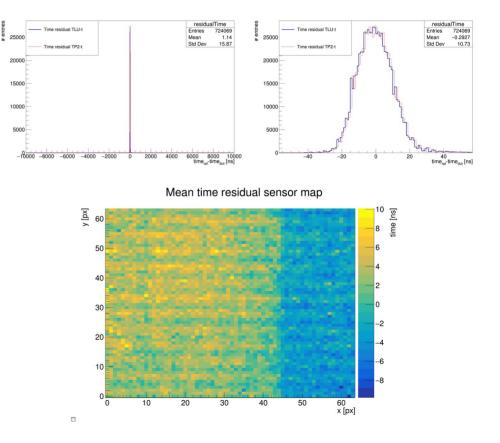


No time cuts

- MPW4 hits matched to tracks in 20µs window
- After applying offset main peak observed at ~Ons
 - Shows $\sigma \sim 10.7$ ns

AUSTRIAN CADEMY OF SCIENCES

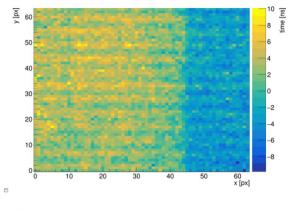
- Second peak observed at $\Delta t \sim$ -6.4 μs
 - 25ns * 256 = 6.4µs
 - Overflow counter too high by one
 - Possible when hits already buffered in chip / getting read out at the moment and overflow output triggers once more
 - Wrong assignment of overflow counter to frame
- No substantial difference between track time from TLU or Telepix

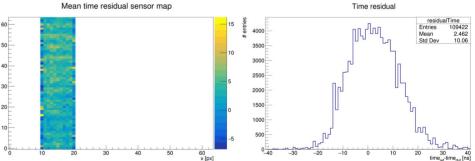


AUSTRIAN CADEMY OF

With time cuts

- Allow Δt of $5\sigma \sim 36$ ns
 - σ as expected MPW4 timing resolution of 25ns $/\sqrt{12}$ ~ 7.2ns
- Secondary peak "cut away"
- Timing resolution of ~10.7ns evaluated
- Mean time residual map shows column gradient
 - Δt between first and last double column ~15 20ns
 - Reason for our poor timing resolution?

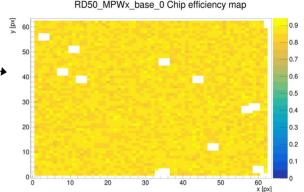


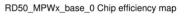

Poor timing resolution

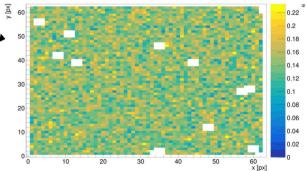
- Is mean-time-residual gradient reason for poor timinng resolution?
- Test by masking all but 10 columns
- Gradient no longer clearly visible
 - Still ranging from (-5ns, 15ns)
 - $\sigma \sim 10.06$ ns

AUSTRIAN CADEMY OF

- Gradient is not the problem, inhomogenity is
- Does not look like time walk
- One could try "calibrating these effects away"




In time efficiency


- 5σ t cut and t-offset of -2212ns $\rightarrow \epsilon \sim 85\%$ -٠
- 15% of our hits are not within 5σ time ٠
- Where are they lost? •

AUSTRIAN CADEMY OF SCIENCES

- Remember secondary peak in time-residals without DUT-t-cuts
- Centered at ~ -6.4 μ s
- 5σ t cut and t-offset of -8612ns $\rightarrow \epsilon \sim 15\%$ ٠
- \rightarrow We loose 15% in-time-efficiency due to wrong • assigned overflow counter
- Can't be done much better in FPGA ٠
- If timing is of importance future iteration needs ٠ larger timestamps

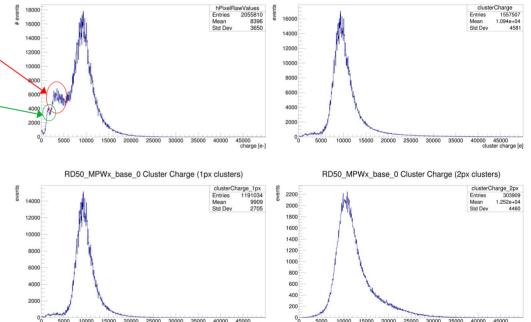
RD50 MPWx base 0 Chip efficiency map

ToT [LSB] \rightarrow Charge [e⁻]

- Applied config from testbeam (HEPHY topside biased) to same chip in lab
- Performed "totCalibration" (new Peary method)
 - Inject into all pixels and sweep on injection voltage V_{inj}; record ToT vs. V_{inj}
- Convert V_{Inj} to Q_{Inj} (via 2.8fF capacitance)
- Perform linear fit to $ToT = k * Q_{lnj} + d$ \rightarrow extract slope and offset \rightarrow write to "calibration file"
- Each pixel gets its own set of {k, d}
- EUDAQ event converter gets calibration file from Corry and converts ToT [LSB] → Q [e⁻]

CADEMY OF

RD50 MPWx base 0 Cluster Charge


Collected charge

5000

- Mean collected pixel-charge ~ 8ke⁻ ٠
 - Charge sharing peak at ~ 3.3ke observed
 - Feature at 1.4ke-_
- Cluster-charge ~ 10.1ke⁻ •

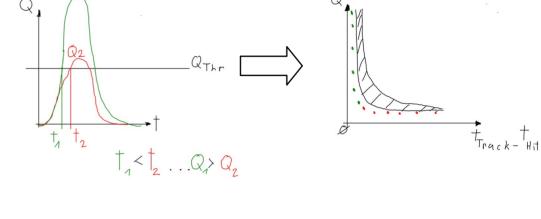
AUSTRIAN CADEMY OF SCIENCES

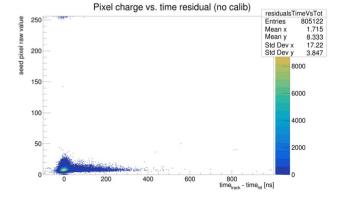
- Expectation from simulations: •
 - Pixel charge: 20.6ke
 - Cluster charge: 27.4ke
- Do we have such bad CCE? ٠
- Or bad calibration •
 - Is entire charge injected into single pixel?
 - Observed in injection scans: Unmasked pixels with disabled injection still get "hit"

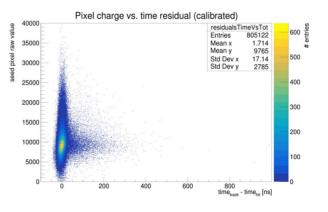
cluster charge [e]

5000

Pixel Charge


10000 15000 20000 25000 30000 35000 40000 45000




Time walk

Q1

- Larger signals exceed threshold earlier
 → earlier timestamp
- Typical "banana" like shape expected (if observable)
- Calibrated Q vs. Δt shows (very faintly) time walk behaviour
- Showcases necessity of larger ToT values

AUSTRIAN CADEMY OF SCIENCES