

CERN LxBatch Service:
HTCondor

Ben Jones IT-CD-CC

06.11.2024 Presenter | Presentation Title 2

• Batch Service

• What is HTCondor ?

• Module 1: Job submission

• Module 2: Multiple Jobs & Requirements

• Module 3: File Transfer

• Feedback / Discussion

Agenda

06.11.2024 Presenter | Presentation Title 3

• IT-CD-CC Mandate:
“Provide high-level compute services to the CERN Tier-0 and WLCG”

• HTCondor: the software running our production batch service.

• Service used for both “grid” and “local” job submission

• “Local” means open to all CERN users, kerberos, shared filesystems, managed
submission nodes

• ~400k CPU cores in 2 HTCondor “pools”

• Over a million jobs a day

• Service Element: Batch Service

Batch Service aka LxBatch

06.11.2024 Presenter | Presentation Title 4

https://cern.service-now.com/service-portal?id=service_element&name=batch

What is

[Some content adapted from “An introduction to using HTCondor” by Christina Kock CHTC]

06.11.2024 Presenter | Presentation Title 5

?

• A batch system – a system to run compute tasks or “jobs”

• Open Source batch system developed at the CHTC at the University of Wisconsin

• “High Throughput Computing” – maximise for overall throughput and utilisation

• Long history in High Energy Physics (and elsewhere)

• Used extensively in the WLCG & OSG, and the CMS global pool

• System of symmetric matching job requests to resources using ‘ClassAds’ of job
requirements and machine capabilities

What is ?

06.11.2024 Presenter | Presentation Title 6

HTCondor Elements

Schedd
Schedd

Schedd
Schedd

Schedd

Collector

Negotiator

Startd
Startd

Startd
Startd

Startd
Startd

Startd
Startd

Startd
Startd

Startd
Startd

Startd
Startd

Submit Side Broker Execute Side

Send jobs to

reserved slot

Send machine

properties

(ClassAds)

Pull list of jobs

Match jobs &

machines

• A single computing task is called a “job”

• Three main pieces of a job are the input, executable and output

Jobs

06.11.2024 Presenter | Presentation Title 8

The executable must be runnable from the command line without any interactive input

Job Example

06.11.2024 Presenter | Presentation Title 9

mdc.dat

compare_

states

pdc.dat

ge.dat.out

$ compare_states mdc.dat pdc.dat ge.dat.out

Submit file: communicates everything about your job(s) to HTCondor

Job Translation

06.11.2024 Presenter | Presentation Title 10

executable = compare_states

arguments = mdc.dat pdc.dat ge.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

A key goal of this training is to show you how to represent your job in a submit file

HTCondor Pool – “CERN Condor Share”

CERN HTCondor Service

06.11.2024 Presenter | Presentation Title 11

W
o

rk
e
rs

Local Schedd

bigbirdXY.cern.ch

Central Manager

tweetybirdXY.cern.ch

Worker

GRID

Local Users

Token

Kerberos

Authentication

Typically from

lxplus.cern.ch

Authentication

Worker Worker

Local Schedd

bigbirdXY.cern.ch

Local Schedd

bigbirdXY.cern.ch

CE Schedd

ce5XY.cern.ch

CE Schedd

ce5XY.cern.ch

CE Schedd

ce5XY.cern.ch

el9 / Mix gpu / ARM el9 / Short

…

…

Worker Worker Worker …Worker Worker WorkerWorkerWorker
Worker

Central Manager

tweetybirdXY.cern.ch

Different flavours, same config:

afs, cvmfs, eos, root,…

“It’s like lxplus”

Environment Setup

06.11.2024 Presenter | Presentation Title 12

• All the exercises are to be run from lxplus:

Submit Environment (I)

06.11.2024 Presenter | Presentation Title 13

% ssh lxplus.cern.ch
[bejones@lxplus943 ~]$

[bejones@lxplus943 ~]$ condor_version
$CondorVersion: 23.0.2 2023-11-20 BuildID: 690948 PackageID: 23.0.2-1 $
$CondorPlatform: x86_64_AlmaLinux9 $

• HTCondor client tools present:

• Condor versions vary between the submit side and the execute side, but are
compatible

Submit Environment (II)

06.11.2024 Presenter | Presentation Title 14

[bejones@lxplus9119 ~]$ condor_q -totals

-- Schedd: bigbird25.cern.ch : <188.185.6.50:9618?... @ 10/28/24 16:19:04
Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for bejones: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 35458 jobs; 1052 completed, 1455 removed, 20037 idle, 1566 running,
11348 held, 0 suspended

• LxPlus is preconfigured for CERN HTCondor:

• The central manager hostnames

• A default authentication method: kerberos

• A predefined schedd for the user

[bejones@lxplus9119 ~]$ myschedd out
SCHEDD_HOST = bigbird25.cern.ch
CREDD_HOST = $(SCHEDD_HOST)

• The training exercises are available in gitlab:

https://gitlab.cern.ch/batch-team/htcondor-training

• Use the “ShortTraining” folder:

Submit Environment (III)

06.11.2024 Presenter | Presentation Title 15

[bejones@lxplus9124 Dev $ git clone https://gitlab.cern.ch/batch-team/htcondor-training.git
Cloning into 'htcondor-training'...
remote: Enumerating objects: 232, done.
remote: Total 232 (delta 0), reused 0 (delta 0), pack-reused 232 (from 1)
Receiving objects: 100% (232/232), 15.28 MiB | 17.48 MiB/s, done.
Resolving deltas: 100% (92/92), done.
[bejones@lxplus9124 Dev $ cd htcondor-training/ShortTraining
[bejones@lxplus9124 ShortTraining $

https://gitlab.cern.ch/batch-team/htcondor-training

Module I:
Basic Submission & Monitoring

06.11.2024 Presenter | Presentation Title 16

Ex. 1: Job Submission: submit file

log: file created by HTCondor to log job
progress

queue: keyword indicating “create a job”

universe: an HTCondor execution
environment.
Vanilla is the default and should cover 90% of
cases

executable: the thing you want to run –
beware a script needs to be correctly
formatted!

arguments: arguments are any options passed
to the executable from the command line.

output/error: captures stdout & stderr

06.11.2024 Presenter | Presentation Title 17

[bejones@lxplus943 ~]$ vi ex1.sub

universe = vanilla

executable = ex1.sh

arguments = "training 2024"

output = output/ex1.out

error = error/ex1.err

log = log/ex1.log

queue

Ex.1: Job Submission: script

06.11.2024 Presenter | Presentation Title 18

[bejones@lxplus943 ~]$ vi ex1.sub

#!/bin/sh

echo 'Date: ' $(date)

echo 'Host: ' $(hostname)

echo 'System: ' $(uname -spo)

echo 'Home: ' $HOME

echo 'Workdir: ' $PWD

echo 'Path: ' $PATH

echo "Program: $0"

echo "Args: $*"

The shebang (#!) is mandatory when submitting script files in HTCondor:

“#!/bin/sh” “#!/bin/bash” “#!/bin/env python”

Malformed or invalid shebang silently ignored and no error reported

[bejones@lxplus943 ~]$ chmod +x ex1.sh

https://en.wikipedia.org/wiki/Shebang_(Unix)

Ex. 1: Job Submission

06.11.2024 Presenter | Presentation Title 19

universe = vanilla

executable = ex1.sh

arguments = "training 2018"

output = output/ex1.out

error = error/ex1.err

log = log/ex1.log

queue

[bejones@lxplus9124 ShortTraining]$ condor_submit ex1.sub
Submitting job(s).
1 job(s) submitted to cluster 4793413.

[bejones@lxplus9124 ShortTraining]$ condor_q

-- Schedd: bigbird25.cern.ch : <188.185.6.50:9618?... @ 10/29/24 15:03:45
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
bejones ID: 4793413 10/29 15:03 _ _ 1 1 4793413.0

Total for query: 1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

To submit a job or some jobs:

condor_submit <submit file>

To monitor submitted jobs:

condor_q

• By default condor_q shows:

• User’s job only

• Jobs summarized in batches: same cluster, same executable, or same batch name

More about condor_q

06.11.2024 Presenter | Presentation Title 20

[bejones@lxplus9124 ShortTraining]$ condor_q

-- Schedd: bigbird25.cern.ch : <188.185.6.50:9618?... @ 10/29/24 15:03:45
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
bejones ID: 4793413 10/29 15:03 _ _ 1 1 4793413.0

Total for query: 1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

Job_ID = ClusterId.ProcID

• To see individual job information use:

condor_q -nobatch

More about condor_q

06.11.2024 Presenter | Presentation Title 21

[bejones@lxplus9121 condor]$ condor_q -nobatch

-- Schedd: bigbird25.cern.ch : <188.185.6.50:9618?... @ 11/01/24 09:26:59
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
4899199.0 bejones 11/1 09:26 0+00:00:00 I 0 0.0 hello.sh
4899199.1 bejones 11/1 09:26 0+00:00:00 I 0 0.0 hello.sh
4899199.2 bejones 11/1 09:26 0+00:00:00 I 0 0.0 hello.sh

Total for query: 3 jobs; 0 completed, 0 removed, 3 idle, 0 running, 0 held, 0 suspended

Job States

06.11.2024 Presenter | Presentation Title 22

condor_

submit

Idle

(I)

Running

(R)

Completed

(C)

transfer

executable

and input to

execute

node

transfer

output

back to

submit node

in the queue leaving the queue

Log File

06.11.2024 Presenter | Presentation Title 23

000 (168.000.000) 11/20 11:34:25 Job submitted from host:

<137.138.120.138:9618?addrs=137.138.120.138-9618&noUDP&sock=1069_d2d4_3>

...

001 (168.000.000) 11/20 11:37:26 Job executing on host:

<188.185.217.222:9618?addrs=188.185.217.222-9618+[--1]-9618&noUDP&sock=3285_211b_3>

...

006 (168.000.000) 11/20 11:37:30 Image size of job updated: 15

0 - MemoryUsage of job (MB)

0 - ResidentSetSize of job (KB)

...

005 (168.000.000) 11/20 11:37:30 Job terminated.

(1) Normal termination (return value 0)

Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage

Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage

Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage

Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

19 - Run Bytes Sent By Job

15768 - Run Bytes Received By Job

19 - Total Bytes Sent By Job

15768 - Total Bytes Received By Job

Partitionable Resources : Usage Request Allocated

Cpus : 1 1

Disk (KB) : 31 15 1841176

Memory (MB) : 0 2000 2000

...

Ex1: Job Submission: result

06.11.2024 Presenter | Presentation Title 24

[bejones@lxplus] $ cat output/ex1.out[bejones@lxplus] $./ex1.sh training 2024

Date: Fri Nov 1 09:45:36 AM CET 2024

Host: lxplus9121.cern.ch

System: Linux x86_64 GNU/Linux

Home: /afs/cern.ch/user/b/bejones

Workdir: /afs/cern.ch/user/b/bejones/Dev/htcondor-

training/ShortTraining

Path:

/opt/conda/bin:/usr/sue/bin:/usr/share/Modules/bin:/

usr/condabin:/usr/local/bin:/usr/bin:/usr/local/sbin

:/usr/sbin:/opt/puppetlabs/bin:/afs/cern.ch/user/b/b

ejones/bin

Program: ./ex1.sh

Args: training 2024

Date: Tue Oct 29 03:05:22 PM CET 2024

Host: b9g37p4324.cern.ch

System: Linux x86_64 GNU/Linux

Home: /afs/cern.ch/user/b/bejones

Workdir: /pool/condor/dir_1770839

Path:

/usr/sue/bin:/usr/share/Modules/bin:/usr/condabin:/u

sr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt

/puppetlabs/bin

Program: condor_exec.exe

Args: training 2024

Jobs start with a basic environment configuration:

Env files such as ~/.bashrc or ~/.bash_profile are not loaded

You should explicitly define the environment of your job

Ex1: Environment

06.11.2024 Presenter | Presentation Title 25

[bejones@lxplus] $ vi ex2.sub ex2.sh

universe = vanilla

executable = ex2.sh

arguments = "training 2024"

Environment = PATH=$ENV(PATH)

output = output/ex2.out

error = error/ex2.err

log = log/ex2.log

+TrainingJob=True

queue

#!/bin/sh

export PATH=$PATH:$HOME/magic

echo 'Date: ' $(date)

echo 'Host: ' $(hostname)

echo 'System: ' $(uname -spo)

echo 'Home: ' $HOME

echo 'Workdir: ' $PWD

echo 'Path: ' $PATH

echo "Program: $0"

echo "Args: $*"

Submit files accept the keyword “getenv=True” that copies the entire environment.

We don’t recommend its usage, and we encourage users to identify correctly

the job dependencies regarding environment variables.

The Central Manager
Class Ads & Matchmaking

06.11.2024 Presenter | Presentation Title 26

HTCondor matches jobs with computers via a “central manager”

The Central Manager

06.11.2024 Presenter | Presentation Title 27

submit

execute

execute

execute

central manager

• HTCondor stores a list of information about each job and each computer.

• This information is stored as a “Class Ad”

• Class Ads have the format:
AttributeName = value

• value can be Boolean, number or string

Class Ads

06.11.2024 Presenter | Presentation Title 28

Job Class Ads

06.11.2024 Presenter | Presentation Title 29

RequestCpus = 1

Err = “job.err"

WhenToTransferOutput = "ON_EXIT"

TargetType = "Machine"

Cmd =

“/afs/cern.ch/user/f/fernandl/condor/exe“

Arguments = “x y z”

JobUniverse = 5

Iwd = “/afs/cern.ch/user/f/fernandl/condor"

RequestDisk = 20480

NumJobStarts = 0

WantRemoteIO = true

OnExitRemove = true

MyType = "Job"

Out = "job.out"

UserLog =

“/afs/cern.ch/user/f/fernandl/condor/job.log"

RequestMemory = 20

...

...

+

HTCondor configuration*

executable = exe

Arguments = “x y z”

log = job.log

output = job.out

error = job.err

queue 1

=

Machine Class Ads

06.11.2024 Presenter | Presentation Title 30

HasFileTransfer = true

DynamicSlot = true

TotalSlotDisk = 4300218.0

TargetType = "Job"

TotalSlotMemory = 2048

Mips = 17902

Memory = 2048

UtsnameSysname = "Linux"

MAX_PREEMPT = (3600 * 72)

Requirements = (START) && (

IsValidCheckpointPlatform) && (

WithinResourceLimits)

OpSysMajorVer = 6

TotalMemory = 9889

HasGluster = true

OpSysName = "SL"

HasDocker = true

...

=

+

HTCondor configuration*

On a regular basis – the “negotiation cycle” – the central manager reviews
Job and Machine Class Ads and matches jobs to computers

Job Matching

06.11.2024 Presenter | Presentation Title 31

submit

execute

execute

execute

central manager

Class Ads for People

Class Ads also provide lots of useful
information about jobs and computers to
HTCondor users and administrators

06.11.2024 Presenter | Presentation Title 32

Use the “long” option for condor_q: condor_q –l <jobid>

Finding Job Attributes

06.11.2024 Presenter | Presentation Title 33

$ condor_q -l 4910855.0
AccountingGroup = "group_u_DTEAM.grid_DTEAM.bejones"
Arguments = "training 2024"
AutoClusterId = 45671
CernFlagCentOS7 = false
CernFlagComplexOpSysAndVer = false
CernFlagUnsupportedOpSysRequirement = false
CernUnparsedRequirements = "(TARGET.Arch == \"X86_64\") && (TARGET.OpSys == \"LINUX\") && (TARGET.Disk >=
RequestDisk) && (TARGET.Memory >= RequestMemory) && ((TARGET.FileSystemDomain == MY.FileSystemDomain) ||
(TARGET.HasFileTransfer))"
ChargeGroup = "dteam"
ChargeGroupType = "experiment"
ChargeRole = "DTEAM Grid"
ClusterId = 4910855
Cmd = "/afs/cern.ch/user/b/bejones/public/Dev/htcondor-training/ShortTraining/ex2.sh”
. . .

Use the “af” option for condor_q for one key: condor_q <jobid> -af <key>

$ condor_q 4910855.0 -af Cmd
/afs/cern.ch/user/b/bejones/public/Dev/htcondor-training/ShortTraining/ex2.sh

Ex. 3: Input Files

06.11.2024 Presenter | Presentation Title 34

[bejones@lxplus943 ~]$ vi ex3.sub ex3.py

universe = vanilla

executable = ex3.sh

arguments = "words.txt"

should_transfer_files = YES

transfer_input_files = words.txt

when_to_transfer_output = ON_EXIT

output = output/ex3.out

error = error/ex3.err

log = log/ex3.log

queue

#!/usr/bin/env python3

import os

import sys

if len(sys.argv) != 2:

print(f'Usage: %s DATA

{os.path.basename(sys.argv[0])}')

sys.exit(1)

input_filename = sys.argv[1]

words = {}

my_file = open(input_filename, 'r',

encoding='latin-1’)

…

Ex. 3: Input Files

should_transfer_files

transfer_input_files

indicate to HTCondor what is the
required input

when_to_transfer_output

HTCondor will transfer back all new
and changed files (usually output)

from the job

06.11.2024 Presenter | Presentation Title 35

universe = vanilla

executable = ex3.py

arguments = "words.txt"

should_transfer_files = YES

transfer_input_files = words.txt

when_to_transfer_output = ON_EXIT

output = output/ex3.out

error = error/ex3.err

log = log/ex3.log

queue

$ condor_q 4911831.0 -af TransferInput Iwd Arguments
words.txt /afs/cern.ch/user/b/bejones/public/Dev/htcondor-training/ShortTraining words.txt

• Jobs use a part of the computer, not the whole thing

• Important to size job requirements appropriately: memory, cpus and disk.

• CERN HTCondor defaults:

• 1 CPU

• 2 Gb ram

• 20 GiB disk

• Size for what you need!

• Too little: your job might try to use more, and may be killed by the system

• Use too much: your job will be inefficient and will waste resources

Resource Request

06.11.2024 Presenter | Presentation Title 36

whole

computer

your request

• Job don’t start immediately after submission

• Many factors involved:

• Negotiation Cycle: the central managers loop through a matchmaking cycle about every 2-5 minutes.

• User priority: users priority is dynamic, and recalculate according to usage and the quota of the groups

to which they belong

• Availabilty of resources: Machines matching your job requirements might be busy.

Time to start running

06.11.2024 Presenter | Presentation Title 37

Module II:
Multiple Jobs & Job Lifecycle

06.11.2024 Presenter | Presentation Title 38

Pre-defined-macros: we can use the
$ClusterId and $ProcId vars in
order to provide unique values to the
job files

Ex. 4: Multiple Jobs (queue)

06.11.2024 Presenter | Presentation Title 39

[bejones@lxplus943 ~]$ vi ex4.sub

universe = vanilla

executable = ex4.sh

arguments = $(ClusterId) $(JobId)

output = output/$(ClusterId).$(ProcId).out

error = error/$(ClusterId).$(ProcId).err

log = log/$(ClusterId).log

queue 5

queue: this keyword controls how
many instances of the job are
submitted (default: 1). It also supports
more sophisticated patterns.

The usage of regular expressions in queue allows us to submit more than one
different job

Ex. 5: Multiple Jobs (queue)

06.11.2024 Presenter | Presentation Title 40

[bejones@lxplus943 ~]$ vi ex5.sub

universe = vanilla

executable = $(filename)

output = output/$(ClusterId).$(ProcId).out

error = error/$(ClusterId).$(ProcId).err

log = log/$(ClusterId).log

queue filename matching files ex5/*.sh

The resulting jobs point to different executables, but they will belong to the same

ClusterId with different ProcIds

Multiple queue

statements

Not recommended, and deprecated in future versions.

Matching .. pattern Natural nested looping minimal programming, use optional “files” and “dirs” keywords

to only match files or directories.

Requires good naming conventions.

in .. list Supports multiple variables, all information contained in a single file, reproducible.

Harder to automate submit file creation.

from .. file Supports multiple variables, highly modular (easy to use one submit file for many job

batches), reproducible.

Additional file needed.

Queue Statement Comparison

06.11.2024 Presenter | Presentation Title 41

• In HTCondor we can specify requirements in the job submit file, which will end up in
the job’s ClassAd. This can include things like the name of the execute machine, the
desired operating system, etc.

• We can modify the requirements based on our preferences by just adding the
following line in the submit file:

requirements = <ClassAd expression>

• We can use comparision operators like <, >, <=, =>, ==, or use the special operators
=?= and =!= which better handle cases where variables are undefined.

• It’s a good idea to test that your requirement will match machines! The same
requirement can be used as a “--constraint” to the condor_status command.

condor_status –const ‘OpSysAndVer =?= “AlmaLinux9”’

Requirements

06.11.2024 Presenter | Presentation Title 42

request_cpus: this example shows how to specify the number of CPUs to
request for the job.

Ex. 6: Requirements (resources)

06.11.2024 Presenter | Presentation Title 43

[bejones@lxplus943 ~]$ vi ex6.sub

universe = vanilla

executable = ex6.sh

output = output/$(ClusterId).$(ProcId).out

error = error/$(ClusterId).$(ProcId).err

log = log/$(ClusterId).log

request_cpus = 2

queue

We scale CPU/memory to the WLCG standard of 2Gb / CPU core. This request will

automatically ask for 4Gb of memory.

requirements: this example shows how to use requirements to select an
attribute of the machines, in this case Operating System.

Ex. 7: Requirements (operating system)

06.11.2024 Presenter | Presentation Title 44

[bejones@lxplus943 ~]$ vi ex7.sub

universe = vanilla

executable = ex6.sh

output = output/$(ClusterId).$(ProcId).out

error = error/$(ClusterId).$(ProcId).err

log = log/$(ClusterId).log

requirements = (OpSysAndVer =?= “AlmaLinux9”)

queue

Note at the time of writing, we have 100% the same operating system, but this will not

always be the case. Try condor_status -compact -af OpSysAndVer | sort | uniq -c

MaxRuntime: maximum number of seconds that your job will be allowed to
run (wall time)

Ex. 8: Requirements (MaxRuntime)

06.11.2024 Presenter | Presentation Title 45

[bejones@lxplus943 ~]$ vi ex8.sub

universe = vanilla

executable = ex8.sh

output = output/$(ClusterId).$(ProcId).out

error = error/$(ClusterId).$(ProcId).err

log = log/$(ClusterId).log

+MaxRuntime = 120

queue

MaxRuntime should be indicative of how long jobs should take to run. It doesn’t need to

be very accurate, but helps the service be more efficient, and prioritise shorter jobs.

JobFlavour is a macro to select a pre-defined MaxRuntime. The default, if neither
MaxRuntime nor JobFlavour are defined, is espresso

CERNism: JobFlavour

06.11.2024 Presenter | Presentation Title 46

universe = vanilla

executable = training.sh

output = output/$(ClusterId).$(ProcId).out

error = error/$(ClusterId).$(ProcId).err

Log = log/$(ClusterId).log

+JobFlavour = "microcentury"

queue

espresso = 20 min

microcentury = 1 hour

longlunch = 2 hours

workday = 8 hours

tomorrow = 1 day

testmatch = 3 days

nextweek = 1 week

Note if the job exceeds MaxRuntime, it will be removed by the system

• condor_status can be used to query machines and other infrastructure

$ condor_status -avail # show available machines
$ condor_status -schedd # show schedds
$ condor_status <hostname> # show worker nodes summary
$ condor_status -l <hostname> # show worker node ClassAd

• It also supports filtering by ClassAd:

Debug tools: condor_status

06.11.2024 Presenter | Presentation Title 47

$ condor_status -const 'Arch =?= "aarch64"' -compact -limit 2
Machine Platform Slots Cpus Gpus TotalGb FreCpu FreeGb CpuLoad ST Jobs/Min MaxSlotGb

b9g40p6295.cern.ch aarch64/AlmaLinux9 1 80 375.00 72 359.38 0.00 ** 0.10 15.62
b9g40p7942.cern.ch aarch64/AlmaLinux9 0 80 376.46 80 376.46 0.00 Ui 0.00 *

Total Owner Claimed Unclaimed Matched Preempting Drain Backfill BkIdle

aarch64/AlmaLinux9 3 0 1 2 0 0 0 0 0

Total 3 0 1 2 0 0 0 0 0

• Creates an ssh session to a running job.

$ condor_ssh_to_job <jobid>
$ condor_ssh_to_job –auto-retry <jobid>

• This will get us to the same machine, in the working directory of the job, and we can
see the stdout/err etc

• (though if you just want to see those files, you can use condor_tail)

Debug tools: condor_ssh_to_job

06.11.2024 Presenter | Presentation Title 48

$ condor_ssh_to_job 5024157.0
Welcome to slot1_1@b9g37p4425.cern.ch!
Your condor job is running with pid(s) 653021.
[bejones@b9g37p4425 dir_652931]$ ls
bejones.cc _condor_stderr _condor_stdout long.sh srv tmp var

Module III: File Transfer

06.11.2024 Presenter | Presentation Title 49

File Transfer

06.11.2024 Presenter | Presentation Title 50

• A job will need input and output

data.

• There are several ways to get

data in or out of the batch

system, so we need to know a

little about the trade offs.

• Do you want to use a shared

filesystem? Do you want to

have condor transfer data for

you? Should you input or output

in the job payload / executable

itself?

Adding Input Files

• In order to add input files, we just need
to use the transfer_input_files
directive in our submit file

• It’s a list of files to take from the working
directory to send to the job sandbox

• This example will produce one output file
“merge.out”

06.11.2024 Presenter | Presentation Title 51

executable = merge.sh

arguments = a.txt b.txt merge.out

transfer_input_files = a.txt, b.txt

log = job.log

output = job.out

error = job.err

+JobFlavour = “longlunch”

queue 1

Transferring output back

• By default condor with transfer
everything in your “sandbox” back to
your submit directory

• To only transfer the file(s) back you need,
use transfer_output_files

• Adding to transfer_output_files
means those listed files will be available
to condor_tail

• If you don’t need anything back –
perhaps because the job transfers
anything it needs – use an empty string
ie “”

06.11.2024 Presenter | Presentation Title 52

executable = merge.sh

arguments = a.txt b.txt merge.out

transfer_input_files = a.txt, b.txt

transfer_output_files = merge.out

log = job.log

output = job.out

error = job.err

+JobFlavour = “longlunch”

queue 1

Transfer to EOS using URL

• The HTCondor schedds do not have /eos/
available on the filesystem, but you can
transfer to/from EOS using a root:// url

• The example here uses
output_destination to send the whole
output sandbox to this URL

• This means everything except the ”log” which is

not sent to the worker node

• This is better than having the job script
transfer because there is error checking

06.11.2024 Presenter | Presentation Title 53

executable = merge.sh

arguments = a.txt b.txt merge.out

transfer_input_files = a.txt, b.txt

output_destination =

root://eosuser.cern.ch//eos/user/b/bejone

s/condor/$(ClusterId)/

log = job.log

output = job.out

error = job.err

+JobFlavour = “longlunch”

queue 1

executable = merge.sh

arguments = a.txt b.txt merge.out

transfer_input_files =

root://eosuser.cern.ch//eos/user/b/bejones/condor/input/a.txt

output_destination =

root://eosuser.cern.ch//eos/user/b/bejones/condor/$(ClusterId)/

log = job.log

output = job.out

error = job.err

+JobFlavour = “longlunch”

queue 1

Input files via URL also possible

06.11.2024 Presenter | Presentation Title 54

• Even when using a share filesystem, input files and exectuables are transferred to a
scratch space on the workers; the “sandbox”

• When writing jobs, remember the impact on the filesystem! The most efficient use of
network filesystems is typically to write once at the end of a job.

• We provision ~30GiB of sandbox disk per CPU

• When using the standard htcondor file transfer mechanism, we limit to 1GB per job

• There’s no such limit using the URL based method

• The job itself has access to filesystems and file transfer protocols, so can do some i/o
itself

Important Considerations

06.11.2024 Presenter | Presentation Title 55

• You may not want condor to create files in your home directory

• Particularly if you are submitting 10s of 1000s of jobs

• condor_submit –spool transfers all files to the schedd

• Important notes:

• This makes the system asynchronous – to get any files back directly from htcondor you need to run

condor_transfer_data

• The spool on the Schedd is limited! Make sure transfer_output_files limits the output to what you

absolutely require

• Best practice:

• Use the URL file transfer plugin method

• Alternatively set transfer_output_files to “” and only look at stdout/err in case of errors

condor_submit -spool

06.11.2024 Presenter | Presentation Title 56

• Share filesystem is used a lot for batch jobs

• Current best practices:

• AFS, EOS FUSE, EOS via xrootd/xrdcp are all available on the worker node

• Between the submit node (ie lxplus) and the schedd, only the AFS home directory is available

• No exe, log, stdout, err in /eos in the submit file

• With all network filesytesm, it’s best to write at the end of the job, not constant I/O whilst the job is running

• The schedd is sensitive to filesystem problems – it has to write on behalf of the user.
This means that breakage to EOS FUSE takes down the whole schedd

• Using shared filesystems of any type in the job can become problematic as the jobs
scale to the 1000s of cores available in the batch system

Note on AFS & EOS

06.11.2024 Presenter | Presentation Title 57

• LxBatch User Guide: https://batchdocs.web.cern.ch

• How to benchmark jobs: https://batchdocs.web.cern.ch/local/benchmark.html

• Submit support tickets: https://cern.service-now.com/service-
portal?id=functional_element&name=LXBATCH

• Mattermost channel: https://mattermost.web.cern.ch/it-dep/channels/batchers

Links…

06.11.2024 Presenter | Presentation Title 59

https://batchdocs.web.cern.ch/
https://batchdocs.web.cern.ch/local/benchmark.html
https://cern.service-now.com/service-portal?id=functional_element&name=LXBATCH

