
Introduction to REANA reproducible analyses

Data Analysis Techniques using SWAN and REANA (part 2 of 3)

Marco Donadoni, Tibor Šimko

Department of Information Technology

CERN

CERN School of Computing on IT Services
Ferney-Voltaire, France, November 4th–8th 2024

https://indico.cern.ch/event/1441237/

@tiborsimko 1 / 36

https://indico.cern.ch/event/1441237/


Computational reproducibility

@tiborsimko 2 / 36



Long-term value of data!

Achim Geiser https://indico.cern.ch/event/1009487

Collaborations publish papers even fifteen
years after data taking ends.

DPHEP https://arxiv.org/abs/1205.4667

JADE data (1979–1986) still unique even forty
years later.

@tiborsimko 3 / 36

https://indico.cern.ch/event/1009487
https://arxiv.org/abs/1205.4667


Long-term value of knowledge?

CMS collaboration

Experimental physics done by large groups
of thousands of physicists.

First LHCb paper arXiv.1008.3105

High turnover of young researchers. Half of
LHCb authors remain after ten years.

@tiborsimko 4 / 36



Half of researchers cannot reproduce their own results

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

@tiborsimko 5 / 36

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970


Reproducibility? Reusability? Repeatability? Replicability?

The Turing Way model

https://the-turing-way.netlify.app/reproducible-research/

overview/overview-definitions.html

The PRIMAD model

https://drops.dagstuhl.de/opus/volltexte/2016/5817/pdf/dagrep_

v006_i001_p108_s16041.pdf

From “reproducible” to “reusable” analyses
@tiborsimko 6 / 36

https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://drops.dagstuhl.de/opus/volltexte/2016/5817/pdf/dagrep_v006_i001_p108_s16041.pdf
https://drops.dagstuhl.de/opus/volltexte/2016/5817/pdf/dagrep_v006_i001_p108_s16041.pdf


Good practices are long known, but the uptake is slow
G. K. Sandve, A. Nekrutenko, J. Taylor, E. Hovig: “Ten Simple Rules for Reproducible Computational

Research” (2013) https://doi.org/10.1371/journal.pcbi.1003285

1. For every result, keep track of how it was produced

2. Avoid manual data manipulation steps

3. Archive the exact versions of all external programs used

4. Version control all custom scripts

5. Record all intermediate results, when possible in standardized formats

6. For analyses that include randomness, note underlying random seeds

7. Always store raw data behind plots

8. Generate hierarchical analysis output, allowing layers of increasing detail to be inspected

9. Connect textual statements to underlying results

10. Provide public access to scripts, runs, and results

@tiborsimko 7 / 36

https://doi.org/10.1371/journal.pcbi.1003285


Challenges are both sociological and technological

Survey of 1008 researchers from a leading machine-learning conference (NIPS):

V. Stodden, “The Scientific Method in Practice: Reproducibility in the Computational
Sciences” (2010) http://dx.doi.org/10.2139/ssrn.1550193

@tiborsimko 8 / 36

http://dx.doi.org/10.2139/ssrn.1550193


What’s in it for me?

“Your closest collaborator is you six months ago but you don’t reply to email.”

– Karl Broman, “Tools for Reproducible Research”
https://kbroman.org/Tools4RR/

@tiborsimko 9 / 36

https://kbroman.org/Tools4RR/


The elements of reusable analyses

@tiborsimko 10 / 36



Preserving analysis knowledge

Capturing structured analysis knowledge in “actionable” formats
@tiborsimko 11 / 36



I. Data: Scientific data managers and digital repositories

https://doi.org/10.1007/s41781-019-0026-3

Rucio CERN Open Data

Data in “live” scientific management systems; can be preserved in digital repositories

@tiborsimko 12 / 36

https://doi.org/10.1007/s41781-019-0026-3


II. Code: Preserving research software

−→ −→

←− ←−

https://guides.github.com/activities/citable-code

GitHub ↔ Zenodo bridge to automatically preserve software releases

@tiborsimko 13 / 36

https://guides.github.com/activities/citable-code


III. Computing environment: An example from life sciences

Software changes (Freesurfer 4.3.1, 4.5.0, 5.0.0): 8.8±6.6% (volume) and 2.8±1.3% (thickness)

Operating system changes (macOS 10.5, 10.6): “about factor two smaller”

@tiborsimko 14 / 36



III. Computing environment: Containers

ATLAS collaboration

https://hub.docker.com/r/atlas/analysisbase/tags

CMS collaboration

https://gitlab.cern.ch/cms-cloud/cmssw-docker

Container technology helps to encapsulate the computing environment

@tiborsimko 15 / 36

https://hub.docker.com/r/atlas/analysisbase/tags
https://gitlab.cern.ch/cms-cloud/cmssw-docker


III. Computing environment: Beyond containers

Condition database snapshots for CMS open data on CVMFS

Computing environments may interact with other runtime services; these may need
“encapsulation” as well in order to allow future reuse

@tiborsimko 16 / 36



IV. Computational recipes: One step

input

command

output

environment

A recipe on how to arrive from the input data to the desired output

@tiborsimko 17 / 36



IV. Computational recipes: Many steps (Directed Acyclic Graphs)

Realistic physics analysis workflows may consist of O(1k) computational steps

@tiborsimko 18 / 36



IV. Computational recipes: A variety of computational workflow languages

Serial Yadage CWL Snakemake

@tiborsimko 19 / 36



IV. Computational recipes: Make it actionable

How-to-run recipes in README files are
a good start; but they are not actionable

https://leomurta.github.io/papers/pimentel2019a.pdf

“Out of 863,878 attempted executions
of valid notebooks (...) only 24.11% ex-
ecuted without errors and only 4.03%
produced the same results”

@tiborsimko 20 / 36

https://leomurta.github.io/papers/pimentel2019a.pdf


“Notebooks” and “workflows”: a march of history

“Notebooks”

▶ Started as interactive Python IDE

▶ Been adding kernels (Julia, R)

▶ Been adding explicit parallel DAG
processing (ipyparallel)

▶ Been adding implicit parallel DAG
processing (HTCondor, Spark, Torch)

IDE tools adding batch support −→
,
happy
users

“Workflows”

▶ Started as batch tools

▶ Been standardising “random” glue
scripting practices

▶ Been orchestrating thousands of
batch jobs (HPC, HTC, AWS...)

▶ Been adding IDEs (Arvados, Rabix)

←− Batch tools adding IDE support

@tiborsimko 21 / 36



Summary: Four pillars of reusable computational research

I. Input data

What is your input data?

– input files

– input parameters

III. Computing environment

What is your environment?

– operating system

– database calls

II. Analysis code

Which code analyses it?

– user code

– software frameworks

IV. Computational recipes

Which steps did you take?

– shell commands

– notebooks and workflows

@tiborsimko 22 / 36



REANA

@tiborsimko 23 / 36



Reusable Analyses

https://www.reana.io/

@tiborsimko 24 / 36

https://www.reana.io/


REANA architecture

Respecting diverse habits of diverse
research groups

▶ multiple workflow systems
(CWL, Serial, Snakemake, Yadage)

▶ multiple container technologies
(Docker, Singularity)

▶ multiple compute backends
(Kubernetes, HTCondor, Slurm)

▶ multiple shared storage platforms
(Ceph, CVMFS, EOS, NFS)

@tiborsimko 25 / 36



REANA command-line and web interface

Structure data analysis by means of
declarative workflows

Use command-line and web interfaces to
run analysis on remote compute clusters

@tiborsimko 26 / 36



Data analysis and data production examples

ATLAS https://cds.cern.ch/record/2714064

Data analysis example: ATLAS displaced
jet search reinterpretation

CMS https://github.com/alintulu/reana-demo-JetMETAnalysis

Data production example: CMS jet energy
resolution and corrections

@tiborsimko 27 / 36

https://cds.cern.ch/record/2714064
https://github.com/alintulu/reana-demo-JetMETAnalysis


Example: ATLAS searches for new physics

https://arxiv.org/abs/2403.03494

@tiborsimko 28 / 36

https://arxiv.org/abs/2403.03494


Imperative vs declarative programming

@tiborsimko 29 / 36



Separating “what” from “how”

▶ imperative programming: specifying “how” exactly to arrive at results

for (int i = 0; i < sizeof(people) / sizeof(struct people); i++) {

if (people[i].age < 20) {

printf("%s\n", people[i].name)

}

}

▶ declarative programming: specifying “what” is desired

SELECT name FROM people WHERE age<20

Useful for separating “physics knowledge” from “operational boilerplate”

@tiborsimko 30 / 36



Example: multi-cascading scatter-gather paradigm

@tiborsimko 31 / 36



Example: job dispatch

steps:

analyse_data:

run: analyse_data.cwl

hints:

reana:

compute_backend: slurmcern

out: [DoubleMuParked2012C_10000_Higgs.root]

analyse_mc:

run: analyse_mc.cwl

hints:

reana:

compute_backend: htcondorcern

out: [Higgs4L1file.root]

make_plot:

run: make_plot.cwl

hints:

reana:

compute_backend: kubernetes

in:

DoubleMuParked2012C_10000_Higgs: >

analyse_data/DoubleMuParked2012C_10000_Higgs.root

Higgs4L1file: >

analyse_mc/Higgs4L1file.root

out: [mass4l_combine_userlvl3.pdf]

Custom workflow hints for hybrid dispatch
@tiborsimko 32 / 36



Reproducibility vs preproducibility

@tiborsimko 33 / 36



“Preproducible” analyses Nature 557 (2018) 613

https://doi.org/10.1038/d41586-018-05256-0

Driving preproducibility via Continuous Integration with source code management systems

@tiborsimko 34 / 36

https://doi.org/10.1038/d41586-018-05256-0


Interactive walkthrough

@tiborsimko 35 / 36



Running your first containerised analysis example on REANA

1. In your browser, open https://reana.cern.ch

and sign in.

2. In your browser, request your access token.

3. In your terminal, log into lxplus.cern.ch.

4. Follow along with the presenter to run your first
containerised analysis example!

$ git clone --depth 1 -b csc-it-services-2024 \

https://github.com/reanahub/reana-demo-root6-roofit

$ cd reana-demo-root6-roofit

$ rm -rf .git

@tiborsimko 36 / 36

https://reana.cern.ch

