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Computational reproducibility
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Long-term value of data!

Achim Geiser https://indico.cern.ch/event/1009487

Collaborations publish papers even fifteen
years after data taking ends.

DPHEP https://arxiv.org/abs/1205.4667

JADE data (1979–1986) still unique even forty
years later.
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Long-term value of knowledge?

CMS collaboration

Experimental physics done by large groups
of thousands of physicists.

First LHCb paper arXiv.1008.3105

High turnover of young researchers. Half of
LHCb authors remain after ten years.
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Half of researchers cannot reproduce their own results

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
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Reproducibility? Reusability? Repeatability? Replicability?

The Turing Way model

https://the-turing-way.netlify.app/reproducible-research/

overview/overview-definitions.html

The PRIMAD model

https://drops.dagstuhl.de/opus/volltexte/2016/5817/pdf/dagrep_

v006_i001_p108_s16041.pdf

From “reproducible” to “reusable” analyses
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Good practices are long known, but the uptake is slow
G. K. Sandve, A. Nekrutenko, J. Taylor, E. Hovig: “Ten Simple Rules for Reproducible Computational

Research” (2013) https://doi.org/10.1371/journal.pcbi.1003285

1. For every result, keep track of how it was produced

2. Avoid manual data manipulation steps

3. Archive the exact versions of all external programs used

4. Version control all custom scripts

5. Record all intermediate results, when possible in standardized formats

6. For analyses that include randomness, note underlying random seeds

7. Always store raw data behind plots

8. Generate hierarchical analysis output, allowing layers of increasing detail to be inspected

9. Connect textual statements to underlying results

10. Provide public access to scripts, runs, and results
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Challenges are both sociological and technological

Survey of 1008 researchers from a leading machine-learning conference (NIPS):

V. Stodden, “The Scientific Method in Practice: Reproducibility in the Computational
Sciences” (2010) http://dx.doi.org/10.2139/ssrn.1550193
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What’s in it for me?

“Your closest collaborator is you six months ago but you don’t reply to email.”

– Karl Broman, “Tools for Reproducible Research”
https://kbroman.org/Tools4RR/
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The elements of reusable analyses
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Preserving analysis knowledge

Capturing structured analysis knowledge in “actionable” formats
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I. Data: Scientific data managers and digital repositories

https://doi.org/10.1007/s41781-019-0026-3

Rucio CERN Open Data

Data in “live” scientific management systems; can be preserved in digital repositories
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II. Code: Preserving research software

−→ −→

←− ←−

https://guides.github.com/activities/citable-code

GitHub ↔ Zenodo bridge to automatically preserve software releases
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III. Computing environment: An example from life sciences

Software changes (Freesurfer 4.3.1, 4.5.0, 5.0.0): 8.8±6.6% (volume) and 2.8±1.3% (thickness)

Operating system changes (macOS 10.5, 10.6): “about factor two smaller”
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III. Computing environment: Containers

ATLAS collaboration

https://hub.docker.com/r/atlas/analysisbase/tags

CMS collaboration

https://gitlab.cern.ch/cms-cloud/cmssw-docker

Container technology helps to encapsulate the computing environment
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III. Computing environment: Beyond containers

Condition database snapshots for CMS open data on CVMFS

Computing environments may interact with other runtime services; these may need
“encapsulation” as well in order to allow future reuse
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IV. Computational recipes: One step

input

command

output

environment

A recipe on how to arrive from the input data to the desired output
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IV. Computational recipes: Many steps (Directed Acyclic Graphs)

Realistic physics analysis workflows may consist of O(1k) computational steps
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IV. Computational recipes: A variety of computational workflow languages

Serial Yadage CWL Snakemake
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IV. Computational recipes: Make it actionable

How-to-run recipes in README files are
a good start; but they are not actionable

https://leomurta.github.io/papers/pimentel2019a.pdf

“Out of 863,878 attempted executions
of valid notebooks (...) only 24.11% ex-
ecuted without errors and only 4.03%
produced the same results”

@tiborsimko 20 / 36

https://leomurta.github.io/papers/pimentel2019a.pdf


“Notebooks” and “workflows”: a march of history

“Notebooks”

▶ Started as interactive Python IDE

▶ Been adding kernels (Julia, R)

▶ Been adding explicit parallel DAG
processing (ipyparallel)

▶ Been adding implicit parallel DAG
processing (HTCondor, Spark, Torch)

IDE tools adding batch support −→
,
happy
users

“Workflows”

▶ Started as batch tools

▶ Been standardising “random” glue
scripting practices

▶ Been orchestrating thousands of
batch jobs (HPC, HTC, AWS...)

▶ Been adding IDEs (Arvados, Rabix)

←− Batch tools adding IDE support
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Summary: Four pillars of reusable computational research

I. Input data

What is your input data?

– input files

– input parameters

III. Computing environment

What is your environment?

– operating system

– database calls

II. Analysis code

Which code analyses it?

– user code

– software frameworks

IV. Computational recipes

Which steps did you take?

– shell commands

– notebooks and workflows
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REANA
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Reusable Analyses

https://www.reana.io/
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REANA architecture

Respecting diverse habits of diverse
research groups

▶ multiple workflow systems
(CWL, Serial, Snakemake, Yadage)

▶ multiple container technologies
(Docker, Singularity)

▶ multiple compute backends
(Kubernetes, HTCondor, Slurm)

▶ multiple shared storage platforms
(Ceph, CVMFS, EOS, NFS)
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REANA command-line and web interface

Structure data analysis by means of
declarative workflows

Use command-line and web interfaces to
run analysis on remote compute clusters
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Data analysis and data production examples

ATLAS https://cds.cern.ch/record/2714064

Data analysis example: ATLAS displaced
jet search reinterpretation

CMS https://github.com/alintulu/reana-demo-JetMETAnalysis

Data production example: CMS jet energy
resolution and corrections
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Example: ATLAS searches for new physics

https://arxiv.org/abs/2403.03494
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Imperative vs declarative programming
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Separating “what” from “how”

▶ imperative programming: specifying “how” exactly to arrive at results

for (int i = 0; i < sizeof(people) / sizeof(struct people); i++) {

if (people[i].age < 20) {

printf("%s\n", people[i].name)

}

}

▶ declarative programming: specifying “what” is desired

SELECT name FROM people WHERE age<20

Useful for separating “physics knowledge” from “operational boilerplate”
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Example: multi-cascading scatter-gather paradigm
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Example: job dispatch

steps:

analyse_data:

run: analyse_data.cwl

hints:

reana:

compute_backend: slurmcern

out: [DoubleMuParked2012C_10000_Higgs.root]

analyse_mc:

run: analyse_mc.cwl

hints:

reana:

compute_backend: htcondorcern

out: [Higgs4L1file.root]

make_plot:

run: make_plot.cwl

hints:

reana:

compute_backend: kubernetes

in:

DoubleMuParked2012C_10000_Higgs: >

analyse_data/DoubleMuParked2012C_10000_Higgs.root

Higgs4L1file: >

analyse_mc/Higgs4L1file.root

out: [mass4l_combine_userlvl3.pdf]

Custom workflow hints for hybrid dispatch
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Reproducibility vs preproducibility
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“Preproducible” analyses Nature 557 (2018) 613

https://doi.org/10.1038/d41586-018-05256-0

Driving preproducibility via Continuous Integration with source code management systems
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Interactive walkthrough
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Running your first containerised analysis example on REANA

1. In your browser, open https://reana.cern.ch

and sign in.

2. In your browser, request your access token.

3. In your terminal, log into lxplus.cern.ch.

4. Follow along with the presenter to run your first
containerised analysis example!

$ git clone --depth 1 -b csc-it-services-2024 \

https://github.com/reanahub/reana-demo-root6-roofit

$ cd reana-demo-root6-roofit

$ rm -rf .git
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