Services for Machine Learning (Part 1)

CERN School of Computing on IT Services 2024 https://indico.cern.ch/event/1441237/timetable/

Ricardo Rocha, IT-CD

Cluster

```
ssh lxplus.cern.ch
openstack coe cluster create --cluster-template kubernetes-1.30.5-1 --node-count 1 csc-demo
openstack coe cluster list
openstack coe cluster config csc-demo
export KUBECONFIG=`pwd`/config
```


Sessions

Services for Machine Learning (Part 1), Ricardo Rocha

Available services and hardware, use cases, containerization, scaling

Services for Machine Learning (Part 2), Diana Gaponcic

Efficient usage of shared GPU resources, partitioning, slicing, ...

Services for Machine Learning (Part 3), Raul Chiorescu

Managing your ML lifecycle with ml.cern.ch

MISTRAL AI_

November 30, 2022

Introducing ChatGPT

Try ChatGPT ↗

Download ChatGPT desktop >

Learn about ChatGPT >

We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests.

ChatGPT is a sibling model to <u>InstructGPT</u>, which is trained to follow an instruction in a prompt and provide a detailed response.

Hype Cycle for Artificial Intelligence, 2023

Gartner.

Use Cases

2nd ML Infrastructure Workshop

Jet taggers

Davide Valsecchi

Jet tagging = playground for ML architectures

 2 leading models emerged in CMS: ParticleNet (graph conv.),
 ParticleTransformer (ParT)

ParticleNet

- Probably we still haven't reached the *ultimate* performance, but CMS focus is also shifting more on consolidation:
 - energy / pT calibration for jet and taus
 - working on jet flavor, tau decay mode and lepton tagging
 - Exploring adv attack and data adaptation to improve stability and minimize efficiency corrections

N₁₁ EdgeConv

2nd CERN IT ML workshop

End-to-end reconstruction

Heavy R&D on end-to-end high granularity calorimeter (HGCAL) reconstruction arxiv2204.01681

From hits \rightarrow clusters position and properties: perfect application of GNNs and object condensation.

- GravNet architecture with dynamical graph building applied successfully arxiv 2106.01832

Challenges:

- large input dimensionality and non-regular data structure
- Implemented custom kNN kernel for in-memory operations (200x faster than pytorch geometric
- Multi-GPU training neede to speed up prototyping

Davide Valsecchi 2nd CERN IT ML workshop 10-10-2023

Training resources - survey

ML development in CMS is carried out independently by many groups: no central training infrastructure in place

- Analysis, reconstruction, trigger, DQM, anomaly detection, simulation → many different requirements
- Organized a survey to collect feedback about training resources:
 - ~small amount of answers (30 for now) but main R&D efforts included
 - the bulk of the distribution (model training for analysis) is still not covered
- Investigated GPU resources needed, resources provider, frequency of retraining, etc

Davide Valsecchi 2nd CERN IT ML workshop

Training resources - survey

resources limitation.

TIFR 2 resource

CERN - Lxplus with local GPU (Ixplus-gpu.cern.ch)

CERN - HTCondor with GPUs

CNAF resource

Conteggio di Computing infrastructure provider

Most of the ML efforts haven't still performed an

extensive hyper-parameters optimization due to

Modern architectures (graph, transformer, NF), which are heavier to train, are now common

16

Davide Valsecchi 2nd CERN IT ML workshop 10-10-2023

Local resources

predominant,

then CERN

resources

Conteggio di Computing infrastructure provider

use still

Hardware: GPUs

Production Inference

- Consider that the bulk of MC simulation and reconstruction could be targeted by GPU-based ML solutions, and some part of analysis and derivations could be accelerated with GPU ML
- We could estimate that O(50%) of the ATLAS computing model could be accelerated by GPU-based ML by 2031

2nd CERN IT Machine Learning Infrastructure Workshop

October 11, 2023

ML Infrastructure C&Os

- Approximately 30% of interest is relevant to ML hardware, software & tooling
- Can be mostly summarized as GPU access & data access

2nd CERN IT Machine Learning Infr

Distributed Training, Automation

Services

CERN IT ML Infrastructure Workshop

09:00	Welcome and Introduction	Ricardo Rocha et al.						
	31/3-004 - IT Amphitheatre, CERN	09:00 - 09:10						
	SWAN	Diogo Castro et al.						
	31/3-004 - IT Amphitheatre, CERN	09:10 - 09:35						
	Batch and Lxplus	Laurence Field 🥝						
	31/3-004 - IT Amphitheatre, CERN	09:35 - 10:00						
10:00	Spark Ecosystem for Machine Learning	Luca Canali 🥝						
	31/3-004 - IT Amphitheatre, CERN	10:00 - 10:25						
	Coffee Break							
	31/3-004 - IT Amphitheatre, CERN	10:25 - 10:40						
	Kubeflow - ml.cern.ch	Dejan Golubovic et al. 🥝						
	31/3-004 - IT Amphitheatre, CERN	10:40 - 11:05						
11:00	Public Cloud	Dr Sofia Vallecorsa						
	31/3-004 - IT Amphitheatre, CERN	11:05 - 11:30						

Hardware

	Supported CUDA Core Precisions							Supported Tensor Core Precisions										
	FP8	FP16	FP32	FP64	INT1	INT4	INT8	TF32	BF16	FP8	FP16	FP32	FP64	INT1	INT4	INT8	TF32	BF16
NVIDIA Tesla P4	No	No	Yes	Yes	No	No	Yes	No	No	No	No	No	No	No	No	No	No	No
NVIDIA P100	No	Yes	Yes	Yes	No	No	No	No	No	No	No	No	No	No	No	No	No	No
NVIDIA Volta	No	Yes	Yes	Yes	No	No	Yes	No	No	No	Yes	No						
NVIDIA Turing	No	Yes	Yes	Yes	No	No	Yes	No	No	No	Yes	No	No	Yes	Yes	Yes	No	No
NVIDIA A100	No	Yes	Yes	Yes	No	No	Yes	No	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
NVIDIA H100	No	Yes	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	No	Yes	No	No	Yes	Yes	Yes

Nvidia Datacenter GPU	Nvidia A100 SXM	Nvidia H100 SXM	Nvidia H100 PCIe
GPU codename	GA100	GH100	GH100
GPU architecture	Ampere	Hopper	Hopper
GPU board form factor	SXM4	SXM5	PCle Gen5
Launch date	May 2020	March 2022	March 2022
GPU process	TSMC 7nm N7	custom TSMC 4N	custom TSMC 4N
Die size	826mm2	814 mm2	814 mm2
Transistor Count	54 billion	80 billion	80 billion
FP64 CUDA cores	3,456	8,448	7,296
FP32 CUDA cores	6,912	16,896	14,592
Tensor Cores	432	528	456
Streaming Multiprocessors	108	132	114
Peak FP64	9.7 teraflops	30 teraflops	24 teraflops
Peak FP64 Tensor Core	19.5 teraflops	60 teraflops	48 teraflops
Peak FP32	19.5 teraflops	60 teraflops	48 teraflops
Peak FP32 Tensor Core	156 teraflops 312 teraflops*	500 teraflops 1,000 teraflops*	400 teraflops 800 teraflops*
Peak BFLOAT16 Tensor Core	312 teraflops 624 teraflops*	1,000 teraflops 2,000 teraflops*	800 teraflops 1,600 teraflops*
Peak FP16 Tensor Core	312 teraflops 624 teraflops*	1,000 teraflops 2,000 teraflops*	800 teraflops 1,600 teraflops*
Peak FP8 Tensor Core	-	2,000 teraflops 4,000 teraflops*	1,600 teraflops 3,200 teraflops*
Peak INT8 Tensor Core	624 TOPS 1,248 TOPS*	2,000 TOPS 4,000 TOPS*	1,600 TOPS 3,200 TOPS*
Peak INT4 Tensor Core	1,248 TOPS 2,496 TOPS*	=	-
Interconnect	NVLink: 600GB/s	NVLink: 900GB/s	NVLink: 600GB/s
	PCI Gen4: 64GB/s	PCI Gen5: 128GB/s	PCI Gen5: 128GB/s
Max TDP	400 watts	700 watts	350 watts

^{*}Effective TFLOPS or FLOPS using the Sparsity feature

Scaling

Research

OpenAl

January 18, 2018

Scaling Kubernetes to 2,500 nodes

We've been running Kubernetes for deep learning research for over two years. While our largest-scale workloads manage bare cloud VMs directly, Kubernetes provides a fast iteration cycle, reasonable scalability, and a lack of boilerplate which makes it ideal for most of our experiments. We now operate several Kubernetes clusters (some in the cloud and some on physical hardware), the largest of which we've pushed to over 2,500 nodes. This cluster runs in Azure on a combination of D15v2 and NC24 VMs.

Q

January 25, 2021

Scaling Kubernetes to 7,500 nodes

We've scaled Kubernetes clusters to 7,500 nodes, producing a scalable infrastructure for large models like <u>GPT-3</u>, <u>CLIP</u>, and <u>DALL·E</u>, but also for rapid small-scale iterative research such as Scaling Laws for Neural Language Models.

Scaling a single Kubernetes cluster to this size is rarely done and requires some special care, but the upside is a simple infrastructure that allows our machine learning research teams to move faster and scale up without changing their code.

Best Practices

Code and Datasets Storage

Containers are **ephemeral**, notebook servers can crash

Keep code and datasets on persistent storage that can be easily accessed

Code - Github or GitLab, commit regularly, generate container images

Datasets - **EOS** or **S3** object storage

Model Training

Develop models with scalability in mind

Develop model training to be distributed across multiple GPUs

Only prototype using a single GPU

TF Distributed - TFJob

Pytorch Distributed - PyTorchJob

Ray, MPI, PaddlePaddle, ...

Containerised Workloads

Build Docker images for your ML workloads

Allows for reproducibility

Mobility - build once, run anywhere

Fast deployment

Integration with other ML components

- **Pipelines**
- Distributed training
- Hyperparameter optimization
- Serving

Demo & Exercises

Cluster

```
ssh lxplus.cern.ch

openstack coe cluster create --cluster-template kubernetes-1.30.5-1 --node-count 1 csc-demo

openstack coe cluster list

openstack coe cluster config csc-demo

export KUBECONFIG=`pwd`/config
```


Basic Job

wget https://kubernetes.io/examples/controllers/job.yaml
kubectl apply -f job.yaml

```
apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 template:
    spec:
      containers:
      - name: pi
        image: perl:5.34.0
        command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
      restartPolicy: Never
 backoffLimit: 4
```


Job Parallelism

https://kubernetes.io/docs/concepts/workloads/controllers/job/

spec:

completions: 10

parallelism: 3

Indexing and Failure Policy

https://kubernetes.io/docs/concepts/workloads/controllers/job/#pod-backoff-failure-policy

```
apiVersion: batch/v1
kind: Job
metadata:
 name: job-backoff-limit-per-index-example
spec:
 completions: 10
 parallelism: 3
 completionMode: Indexed # required for the feature
 backoffLimitPerIndex: 1 # maximal number of failures per index
  maxFailedIndexes: 5
                          # maximal number of failed indexes before terminating the .
 template:
    spec:
     restartPolicy: Never # required for the feature
      containers:
      - name: example
        image: python
                           # The jobs fails as there is at least one failed index
        command:
                           # (all even indexes fail in here), yet all indexes
                           # are executed as maxFailedIndexes is not exceeded.
        - python3
        - - C
          import os, sys
         print("Hello world")
          if int(os.environ.get("JOB_COMPLETION_INDEX")) % 2 == 0:
           sys.exit(1)
```


Training Operator

https://www.kubeflow.org/docs/components/training/overview/

Training Operator

https://www.kubeflow.org/docs/components/training/user-guides/

TFJob: TensorFlow Training

PyTorchJob: PyTorch Training

PaddleJob: PaddlePaddle

XGBoostJob: XGBoost

JAXJob: JAX Training

MPIJob: MPI Training

```
apiVersion: kubeflow.org/v1
kind: PyTorchJob
metadata:
 clusterName: ""
 creationTimestamp: 2018-12-16T21:39:09Z
 generation: 1
 name: pytorch-tcp-dist-mnist
 namespace: default
 resourceVersion: "15532"
 selfLink: /apis/kubeflow.org/v1/namespaces/default/pytorchjobs/pytorch-tcp-dist-mnist
 uid: 059391e8-017b-11e9-bf13-06afd8f55a5c
spec:
 cleanPodPolicy: None
 pytorchReplicaSpecs:
   Master:
     replicas: 1
     restartPolicy: OnFailure
     template:
       metadata:
         creationTimestamp: null
       spec:
            - image: qcr.io/kubeflow-ci/pytorch-dist-mnist test:1.0
             name: pytorch
             ports:
               - containerPort: 23456
                 name: pytorchjob-port
             resources: {}
    Worker:
     replicas: 3
     restartPolicy: OnFailure
     template:
       metadata:
         creationTimestamp: null
       spec:
         containers:
           - image: gcr.io/kubeflow-ci/pytorch-dist-mnist_test:1.0
             name: pytorch
             ports:
               - containerPort: 23456
                 name: pytorchjob-port
             resources: {}
```


PyTorch Job

```
$ kubectl apply -k "github.com/kubeflow/training-operator.git/manifests/overlays/standalone?ref=v1.8.0"
$ wget https://raw.githubusercontent.com/kubeflow/training-operator/master/examples/pytorch/simple.yaml
$ kubectl apply -f simple.yaml
$ kubectl -n kubeflow get pytorchjobs
$ kubectl -n kubeflow logs -f pytorch-simple-worker-0
2024-11-07T08:50:33Z INFO
                             Train Epoch: 1 [0/60000 (0%)] loss=2.2975
2024-11-07T08:50:36Z INFO
                             Train Epoch: 1 [640/60000 (1%)]oss=2.2965
2024-11-07T08:50:40Z INFO
                             Train Epoch: 1 [1280/60000 (2%)] loss=2.2948
2024-11-07T08:50:43Z INFO
                             Train Epoch: 1 [1920/60000 (3%)] loss=2.2833
```


Queues and Multi-Cluster

https://kueue.sigs.k8s.io/docs/concepts/

Local Queue

Cluster Queue

Resource Flavor

Workload Priority

MultiKueue and MultiKueueCluster

Ongoing Work

Ongoing Work

Improved documentation on availability and access to GPUs

Consolidation of GPU pools among services

Integration with public cloud providers

Q & A