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GPU clusters at CERN
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How to create a GPU cluster
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How to create a GPU cluster

1. By default 2 nodes are deployed: the master and the default worker 
node
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How to create a GPU cluster

1. By default 2 nodes are deployed: the master and the default worker 
node

2. No GPU yet
a. the cluster is configured to manage GPUs, but we don’t get a GPU by 

default
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GPU flavors

Consult https://clouddocs.web.cern.ch/gpu_overview.html for an up-to-date list of GPU flavors

https://clouddocs.web.cern.ch/gpu_overview.html
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Add a GPU node
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NVIDIA GPU operator
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nvidia-driver-daemonset
Loads the drivers on the node

nvidia-container-toolkit-ctr
The toolkit includes a container runtime library 

and utilities to automatically configure containers to 
leverage NVIDIA GPUs.

nvidia-dcgm-exporter + nvidia-operator-validator
NVIDIA Data Center GPU Manager (DCGM) is a 

suite of tools for managing and monitoring NVIDIA 
datacenter GPUs. It exposes GPU metrics exporter 
for Prometheus leveraging NVIDIA DCGM.

nvidia-device-plugin-daemonset

Allows to automatically:
1. Expose the number of GPUs 

on each nodes of your cluster
2. Keep track of the health of 

your GPUs
3. Run GPU enabled containers 

in your Kubernetes cluster.

This is what allows NVIDIA GPUs to 
be requested by a container using 
the nvidia.com/gpu resource type.

nvidia-cuda-validator
Validates that the stack 

installation worked
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Node feature discovery
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Node feature discovery
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Disclaimer: 
We will have automatic tainting in the next release

Tainting
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Let’s run some workloads
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Example Use Cases 
(very different GPU consumption behaviour)

An inference service which is occasionally 
triggered by outside events:

● Spiky and unpredictable execution
● Mostly sits idle
● Saturates the GPU cores
● Max 10 GiB VRAM (2 + 8 dynamic)

Never know what to expect from a notebook user:

● Potential memory leaks
● Poorly considered batch size
● GPU memory locked by an idle notebook

Badly coded simulation job:

● Low average GPU usage (CPU 
dependant workload)  

● Needs 10 GiB VRAM (8 + 2 dynamic)
● Long running process

* All use cases were run on a 
CERN Kubernetes cluster with 1 
NVIDIA A100 40GB GPU
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Onboard Only Use Case 1 = Dedicated GPU

Badly coded simulation job:

● Low average GPU usage (CPU 
dependant workload)  

● Needs 10 GiB VRAM (8 + 2 
dynamic)

● Long running process

● GPU underutilized
● Steady memory utilization ~ 20%
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● Dedicated GPUs => small/limited GPU offering
● Some use cases cannot fully utilize a GPU => idle time

Dedicated GPU drawbacks



18

How to improve?

● Dedicated GPUs => small/limited GPU offering
● Some use cases cannot fully utilize a GPU => idle time

Dedicated GPU drawbacks
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GPU Sharing

1. Time-slicing
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● The scheduler gives an equal share of time to all GPU processes and 
alternates them in a round-robin fashion.

● The memory is shared between the processes
● The compute resources are assigned to one process at a time

Time-slicing
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# values.yaml in NVIDIA gpu operator Helm 
chart
...
devicePlugin:
 config:
   name: nvidia-time-slicing-config

# $ cat nvidia-time-slicing-config.yaml 
apiVersion: v1
kind: ConfigMap
metadata:
 name: nvidia-time-slicing-config
 namespace: kube-system
data:
 slice-4: |-
   version: v1
   sharing:
     timeSlicing:
       renameByDefault: true
       failRequestsGreaterThanOne: true
       resources:
       - name: nvidia.com/gpu
         replicas: 4   

apiVersion: v1
kind: Pod
metadata:
 name: tf-gpu
spec:
 containers:
   - name: tf
     image: 
tensorflow/tensorflow:latest-gpu
     command: ["sleep", "inf"]
     resources:
       limits:
         nvidia.com/gpu.shared: 1
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● GPU underutilized
● Steady memory 

utilization ~ 20%

Use case 
1 
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Use case 1 
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● GPU underutilized
● Steady memory 

utilization ~ 20%

Use case 
1 
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● Improved GPU utilization
● Better memory consumption (~ 50 %)

Use case 1 

Use cases 
1 & 2

* Time-Slicing GPU 
Sharing
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Use 
cases 

1 & 2 & 3
* Time-Slicing 
GPU Sharing

GPU utilization 100%

… Perfect, right? 

No.

Use case 3 used all the 
memory, and starved the 
other 2 processes.
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Advantages Disadvantages

Works on a wide range of NVIDIA 
architectures

No process/memory isolation

An easy way to set up GPU 
concurrency

No ability to set priorities

An unlimited number of partitions Inappropriate for latency-sensitive 
applications (ex: desktop rendering 
for CAD workloads)

Time-Slicing
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GPU Sharing

2. Multi Instance GPU
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Multi Instance GPU

Multi Instance GPU (MIG) can partition the GPU into up to seven instances, 
each fully isolated with its own high-bandwidth memory, cache, and 
compute cores.

MIG Profiles on A100 

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
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NVIDIA MIG provides multiple strategies for allowing 
users to reference the graphic card resources:
● mixed: Different resource types are enumerated for every MIG device 

available. Ex: nvidia.com/mig-3g.20gb
● single: MIG devices are enumerated as nvidia.com/gpu, and map to 

the MIG devices available on that node, instead of the full GPUs.
● none: No distinction between GPUs with MIG or without. The 

available devices are listed as nvidia.com/gpu.
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# values.yaml in NVIDIA gpu operator 
Helm chart
...
mig:
 strategy: mixed
migManager:
 config:
   name: nvidia-mig-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: nvidia-mig-config
data:
 config.yaml: |
   version: v1
   mig-configs:
     # A100-40GB
     3g.20gb-2x2g.10gb:
     - devices: all
       mig-enabled: true
       mig-devices:
         "2g.10gb": 2
         "3g.20gb": 1 

apiVersion: v1
kind: Pod
metadata:
 name: tf-gpu
spec:
 containers:
   - name: tf
     image: 
tensorflow/tensorflow:latest-gpu
     command: ["sleep", "inf"]
     resources:
       limits:
         nvidia.com/mig-3g.20gb: 1
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Every process:
● Is isolated
● Saturates own resources
● Cannot influence other 

processes

… Perfect, right?

Yes.

Use case 3 starved itself, 
use cases 1 & 2 continued 
running without issues! 

-> Use Case 1
-> Use Case 2
-> Use Case 3

* MIG GPU 
Sharing
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Advantages Disadvantages

Hardware isolation allows processes to 
run securely in parallel and not influence 
each other

Only available for Ampere, Hopper, and 
Blackwell architecture

Monitoring and telemetry data available 
at partition level

Reconfiguring the partition layout 
requires all running processes to be 
evicted

Allows partitioning based on use cases, 
making the solution flexible

* Potential loss of available memory 
depending on chosen profile layout

Hardware level sharing - MIG

* Not a risk if the partitioning layout is chosen in an informed way after careful 
consideration.
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We established that GPU 
sharing increases overall usage. 

But how do we share in the best way?
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But how do we share in the best way?

1. Summarize in your team all workloads that need GPUs. 
Run them on one cluster and collocate them using 
time-slicing and MIG.

2. Single point of GPU Access across multiple teams
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1. GPUs are always in-use
a. As soon as a GPU is released by an user, it is 

reassigned to another one requesting a GPU
2. People can get access to multiple types of GPUs, or even 

other accelerators (TPUs, IPUs) through public cloud.
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GPU sharing tradeoffs
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Benchmarked script:
● Simulation script that generates collision events. Find more 
● Built with Xsuite (Suite of python packages for multiparticle simulations 

for particle accelerators)
● Very heavy on GPU usage
● Low on memory accesses
● Low on CPU-GPU communication

Environment:
● NVIDIA A100 40GB PCIe GPU
● Kubernetes version 1.22
● Cuda version utilized: 11.6
● Driver Version: 470.129.06

https://kubernetes.docs.cern.ch/blog/2023/03/20/efficient-access-to-shared-gpu-resources-part-3/#compute-intensive-particle-simulations
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Time-slicing Performance Analysis

Number of 
particles

Shared x1 
[seconds]

Expected Shared x2 = 
Shared x1 * 2
[seconds]

Actual Shared 
x2 [seconds]

Loss [%]

15 000 000 77.12 154.24 212.71 37.90

20 000 000 99.91 199.82 276.23 38.23

30 000 000 152.61 305.22 423.08 38.61

The GPU context switching caused a ~38% performance loss
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There is no additional performance loss when sharing the GPU between more 
processes (4, 8, and even more).

Number of 
particles

Shared x2 
[seconds]

Shared x4 
[seconds]

Loss [%]

15 000 000 212.71 421.55 0

20 000 000 276.23 546.19 0

30 000 000 423.08 838.55 0

Number of 
particles

Shared x4 
[seconds]

Shared x8 
[seconds]

Loss [%]

15 000 000 421.55 838.22 0

20 000 000 546.19 1087.99 0

30 000 000 838.55 1672.95 0

Time-slicing Performance Analysis



41

MIG Performance Analysis
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MIG Performance Analysis

The theoretical loss of 9.25% is seen experimentally.

Number of 
particles

Whole GPU, 
no MIG 
[seconds]

Whole GPU, 
with MIG (7g.40gb) 
[seconds]

Loss [%]

5 000 000 26.365 28.732 8.97 %

10 000 000 51.135 55.930 9.37 %

15 000 000 76.374 83.184 8.91 %
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MIG Performance Analysis
Number of particles 7g.40gb [s] 3g.20gb [s] 2g.10gb [s] 1g.5gb [s]

5 000 000 28.732 62.268 92.394 182.32

10 000 000 55.930 122.864 183.01 362.10

15 000 000 83.184 183.688 273.7 542.3

Number of particles 3g.20gb / 7g.40gb 2g.10gb / 3g.20gb 1g.5gb / 2g.10gb

5 000 000 2.16 1.48 1.97

10 000 000 2.19 1.48 1.97

15 000 000 2.20 1.48 1.98

ideal scale 7/3 = 2.33 3/2 = 1.5 2/1 = 2

The scaling between partitions converges to ideal values.
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Category Examples Time slicing MIG

Latency sensitive CAD, Engineering Applications

Interactive Notebooks            ¹

Performance intensive Simulation

Low priority CI Runners

¹ Independent workloads can trigger OOM errors between each other. Needs an external 
mechanism to control memory usage (similar to kubelet CPU memory checks)

GPU Sharing Use Cases
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Monitoring
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https://grafana.com/grafana/dashboards/18288-nvidia-gpu/ 

https://grafana.com/grafana/dashboards/18288-nvidia-gpu/


47

https://docs.nvidia.com/datacenter/dcgm/2.4/dcgm-api/dcgm-api-field-ids.html 
47

Profiling the A100 compute pipeline utilization

# dcgm-metrics.csv
...

DCGM_FI_PROF_PIPE_TENSOR_ACTIVE, gauge, Ratio of cycles the tensor (HMMA) pipe is active (in %).
DCGM_FI_PROF_PIPE_FP64_ACTIVE,   gauge, Ratio of cycles the fp64 pipes are active (in %).
DCGM_FI_PROF_PIPE_FP32_ACTIVE,   gauge, Ratio of cycles the fp32 pipes are active (in %).
DCGM_FI_PROF_PIPE_FP16_ACTIVE,   gauge, Ratio of cycles the fp16 pipes are active (in %).

https://docs.nvidia.com/datacenter/dcgm/2.4/dcgm-api/dcgm-api-field-ids.html
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GPU access using Kubeflow
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Find more:
● https://ml.docs.cern.c

h/ 
● https://ml.cern.ch/ 

… and in the next ML 
session :)

https://ml.docs.cern.ch/
https://ml.docs.cern.ch/
https://ml.cern.ch/
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Conclusions

1. It is easy to create a cluster with GPU nodes
a. The user is abstracted away from having to set any drivers

2. GPU sharing is useful to improve the overall GPU utilization, but it comes 
with performance tradeoffs
a. Sharing helps us to offer GPUs to more users
b. For use cases that can fully utilize the GPU, we need to consider 

allocating dedicated GPUs

3. Monitoring is very important
a. The current infrastructure is flexible enough to cater for various use 

cases

4. For ML workloads consider using Kubeflow
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Thank you!
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Bonus slides
Not a service, but very good to know
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Data Formats

We’ve heard about fp32 and fp64, but what about ML?
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Data formats Usually ML doesn’t need much precision, so 
people starting using half precision (fp16).

Since fp16 has small range (5 bits), Trainings 
with fp16 only, very often results in 
numerical errors (underflow, overflow).

But ML needs range!

This is how mixed precision was invented:
● What is numerical stable -> done in 

fp16
● For the rest -> there is a copy stored in 

fp32

You get the speed, while avoiding numerical 
errors, but memory consumption is bigger 
(V100, T4).



* ML needs range

This is how BFloat16 was created (available for 
Ampere and newer)

The range of fp32, the precision less than fp16

* ML doesn’t need a lot of precision!

Using low precision works because ML tries to 
minimize the error. As long as it can represent 
the number and move towards a smaller error 
- low precision will work and bring speedup.

Low precision can be a problem for regression 
tasks (when you want to get a real number as 
output) - then think about using another 
format.
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Data formats
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Data formats
tf32 is a solution to use when you still want 
the speedup of bf16, but with a bigger 
precision.

Things to keep in mind
● This is an NVIDIA solution (amd still not 

very clear what is the current state)
● not existing on older GPUs
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Exercises Time
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● Group 1
○ Shahzaib Aamir
○ Berk Balci
○ Nayana Bangaru
○ Gábor Bíró
○ Abhishek Bohare
○ Marco Buonsante

● Group 2
○ Gianluca De Bonis
○ Elena de la Fuente Garcia
○ Jesse Geens
○ Ediz Genc
○ Panagiotis Georgopoulos
○ Daniel Goncalves Portovedo

● Access the exercises: 
● https://indico.cern.ch/event/1441237/contributions/6073469/attachments/2952019/52113

17/exercises  

● Group 4
○ Rimsky Alejandro Rojas Caballero
○ Jonathan Samuel
○ Nikolaos Smyrnioudis
○ Lorenzo Valentini
○ Jan Hauke Voss
○ Julian Weick

● Group 5
○ Joao Ramiro
○ Lorenzo Ventura Vagliano
○ Pascal Egner
○ Jakub Jelinek
○ Luis Pelaez Bover 
○ Franciska-Leonora Toeroek 

● Group 3
○ Panagiotis Gkonis
○ Dmytro Gruzdo
○ Hannes Jakob Hansen
○ Musa Kaymaz
○ Idriss Larbi
○ Manuel Ramirez Garcia

https://indico.cern.ch/event/1441237/contributions/6073469/attachments/2952019/5211317/exercises
https://indico.cern.ch/event/1441237/contributions/6073469/attachments/2952019/5211317/exercises

