
1

Services for Machine Learning
applications (part 2 of 3)
Diana Gaponcic, IT-CD-PI

2

GPU clusters at CERN

3

How to create a GPU cluster

4

How to create a GPU cluster

1. By default 2 nodes are deployed: the master and the default worker
node

5

How to create a GPU cluster

1. By default 2 nodes are deployed: the master and the default worker
node

2. No GPU yet
a. the cluster is configured to manage GPUs, but we don’t get a GPU by

default

6

GPU flavors

Consult https://clouddocs.web.cern.ch/gpu_overview.html for an up-to-date list of GPU flavors

https://clouddocs.web.cern.ch/gpu_overview.html

7

Add a GPU node

8

NVIDIA GPU operator

9

nvidia-driver-daemonset
Loads the drivers on the node

nvidia-container-toolkit-ctr
The toolkit includes a container runtime library

and utilities to automatically configure containers to
leverage NVIDIA GPUs.

nvidia-dcgm-exporter + nvidia-operator-validator
NVIDIA Data Center GPU Manager (DCGM) is a

suite of tools for managing and monitoring NVIDIA
datacenter GPUs. It exposes GPU metrics exporter
for Prometheus leveraging NVIDIA DCGM.

nvidia-device-plugin-daemonset

Allows to automatically:
1. Expose the number of GPUs

on each nodes of your cluster
2. Keep track of the health of

your GPUs
3. Run GPU enabled containers

in your Kubernetes cluster.

This is what allows NVIDIA GPUs to
be requested by a container using
the nvidia.com/gpu resource type.

nvidia-cuda-validator
Validates that the stack

installation worked

10

Node feature discovery

11

Node feature discovery

12

13

Disclaimer:
We will have automatic tainting in the next release

Tainting

14

Let’s run some workloads

1515

Example Use Cases
(very different GPU consumption behaviour)

An inference service which is occasionally
triggered by outside events:

● Spiky and unpredictable execution
● Mostly sits idle
● Saturates the GPU cores
● Max 10 GiB VRAM (2 + 8 dynamic)

Never know what to expect from a notebook user:

● Potential memory leaks
● Poorly considered batch size
● GPU memory locked by an idle notebook

Badly coded simulation job:

● Low average GPU usage (CPU
dependant workload)

● Needs 10 GiB VRAM (8 + 2 dynamic)
● Long running process

* All use cases were run on a
CERN Kubernetes cluster with 1
NVIDIA A100 40GB GPU

1616

Onboard Only Use Case 1 = Dedicated GPU

Badly coded simulation job:

● Low average GPU usage (CPU
dependant workload)

● Needs 10 GiB VRAM (8 + 2
dynamic)

● Long running process

● GPU underutilized
● Steady memory utilization ~ 20%

17

● Dedicated GPUs => small/limited GPU offering
● Some use cases cannot fully utilize a GPU => idle time

Dedicated GPU drawbacks

18

How to improve?

● Dedicated GPUs => small/limited GPU offering
● Some use cases cannot fully utilize a GPU => idle time

Dedicated GPU drawbacks

19

GPU Sharing

1. Time-slicing

20

● The scheduler gives an equal share of time to all GPU processes and
alternates them in a round-robin fashion.

● The memory is shared between the processes
● The compute resources are assigned to one process at a time

Time-slicing

21

values.yaml in NVIDIA gpu operator Helm
chart
...
devicePlugin:
 config:
 name: nvidia-time-slicing-config

$ cat nvidia-time-slicing-config.yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: nvidia-time-slicing-config
 namespace: kube-system
data:
 slice-4: |-
 version: v1
 sharing:
 timeSlicing:
 renameByDefault: true
 failRequestsGreaterThanOne: true
 resources:
 - name: nvidia.com/gpu
 replicas: 4

apiVersion: v1
kind: Pod
metadata:
 name: tf-gpu
spec:
 containers:
 - name: tf
 image:
tensorflow/tensorflow:latest-gpu
 command: ["sleep", "inf"]
 resources:
 limits:
 nvidia.com/gpu.shared: 1

22

● GPU underutilized
● Steady memory

utilization ~ 20%

Use case
1

22

Use case 1

23

23

● GPU underutilized
● Steady memory

utilization ~ 20%

Use case
1

23

● Improved GPU utilization
● Better memory consumption (~ 50 %)

Use case 1

Use cases
1 & 2

* Time-Slicing GPU
Sharing

2424

Use
cases

1 & 2 & 3
* Time-Slicing
GPU Sharing

GPU utilization 100%

… Perfect, right?

No.

Use case 3 used all the
memory, and starved the
other 2 processes.

25

26

Advantages Disadvantages

Works on a wide range of NVIDIA
architectures

No process/memory isolation

An easy way to set up GPU
concurrency

No ability to set priorities

An unlimited number of partitions Inappropriate for latency-sensitive
applications (ex: desktop rendering
for CAD workloads)

Time-Slicing

27

GPU Sharing

2. Multi Instance GPU

28

Multi Instance GPU

Multi Instance GPU (MIG) can partition the GPU into up to seven instances,
each fully isolated with its own high-bandwidth memory, cache, and
compute cores.

MIG Profiles on A100

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

29

NVIDIA MIG provides multiple strategies for allowing
users to reference the graphic card resources:
● mixed: Different resource types are enumerated for every MIG device

available. Ex: nvidia.com/mig-3g.20gb
● single: MIG devices are enumerated as nvidia.com/gpu, and map to

the MIG devices available on that node, instead of the full GPUs.
● none: No distinction between GPUs with MIG or without. The

available devices are listed as nvidia.com/gpu.

30

values.yaml in NVIDIA gpu operator
Helm chart
...
mig:
 strategy: mixed
migManager:
 config:
 name: nvidia-mig-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: nvidia-mig-config
data:
 config.yaml: |
 version: v1
 mig-configs:
 # A100-40GB
 3g.20gb-2x2g.10gb:
 - devices: all
 mig-enabled: true
 mig-devices:
 "2g.10gb": 2
 "3g.20gb": 1

apiVersion: v1
kind: Pod
metadata:
 name: tf-gpu
spec:
 containers:
 - name: tf
 image:
tensorflow/tensorflow:latest-gpu
 command: ["sleep", "inf"]
 resources:
 limits:
 nvidia.com/mig-3g.20gb: 1

3131

Every process:
● Is isolated
● Saturates own resources
● Cannot influence other

processes

… Perfect, right?

Yes.

Use case 3 starved itself,
use cases 1 & 2 continued
running without issues!

-> Use Case 1
-> Use Case 2
-> Use Case 3

* MIG GPU
Sharing

32

33

Advantages Disadvantages

Hardware isolation allows processes to
run securely in parallel and not influence
each other

Only available for Ampere, Hopper, and
Blackwell architecture

Monitoring and telemetry data available
at partition level

Reconfiguring the partition layout
requires all running processes to be
evicted

Allows partitioning based on use cases,
making the solution flexible

* Potential loss of available memory
depending on chosen profile layout

Hardware level sharing - MIG

* Not a risk if the partitioning layout is chosen in an informed way after careful
consideration.

34

We established that GPU
sharing increases overall usage.

But how do we share in the best way?

35

But how do we share in the best way?

1. Summarize in your team all workloads that need GPUs.
Run them on one cluster and collocate them using
time-slicing and MIG.

2. Single point of GPU Access across multiple teams

36

1. GPUs are always in-use
a. As soon as a GPU is released by an user, it is

reassigned to another one requesting a GPU
2. People can get access to multiple types of GPUs, or even

other accelerators (TPUs, IPUs) through public cloud.

37

GPU sharing tradeoffs

38

Benchmarked script:
● Simulation script that generates collision events. Find more
● Built with Xsuite (Suite of python packages for multiparticle simulations

for particle accelerators)
● Very heavy on GPU usage
● Low on memory accesses
● Low on CPU-GPU communication

Environment:
● NVIDIA A100 40GB PCIe GPU
● Kubernetes version 1.22
● Cuda version utilized: 11.6
● Driver Version: 470.129.06

https://kubernetes.docs.cern.ch/blog/2023/03/20/efficient-access-to-shared-gpu-resources-part-3/#compute-intensive-particle-simulations

39

Time-slicing Performance Analysis

Number of
particles

Shared x1
[seconds]

Expected Shared x2 =
Shared x1 * 2
[seconds]

Actual Shared
x2 [seconds]

Loss [%]

15 000 000 77.12 154.24 212.71 37.90

20 000 000 99.91 199.82 276.23 38.23

30 000 000 152.61 305.22 423.08 38.61

The GPU context switching caused a ~38% performance loss

40

There is no additional performance loss when sharing the GPU between more
processes (4, 8, and even more).

Number of
particles

Shared x2
[seconds]

Shared x4
[seconds]

Loss [%]

15 000 000 212.71 421.55 0

20 000 000 276.23 546.19 0

30 000 000 423.08 838.55 0

Number of
particles

Shared x4
[seconds]

Shared x8
[seconds]

Loss [%]

15 000 000 421.55 838.22 0

20 000 000 546.19 1087.99 0

30 000 000 838.55 1672.95 0

Time-slicing Performance Analysis

41

MIG Performance Analysis

42

MIG Performance Analysis

The theoretical loss of 9.25% is seen experimentally.

Number of
particles

Whole GPU,
no MIG
[seconds]

Whole GPU,
with MIG (7g.40gb)
[seconds]

Loss [%]

5 000 000 26.365 28.732 8.97 %

10 000 000 51.135 55.930 9.37 %

15 000 000 76.374 83.184 8.91 %

43

MIG Performance Analysis
Number of particles 7g.40gb [s] 3g.20gb [s] 2g.10gb [s] 1g.5gb [s]

5 000 000 28.732 62.268 92.394 182.32

10 000 000 55.930 122.864 183.01 362.10

15 000 000 83.184 183.688 273.7 542.3

Number of particles 3g.20gb / 7g.40gb 2g.10gb / 3g.20gb 1g.5gb / 2g.10gb

5 000 000 2.16 1.48 1.97

10 000 000 2.19 1.48 1.97

15 000 000 2.20 1.48 1.98

ideal scale 7/3 = 2.33 3/2 = 1.5 2/1 = 2

The scaling between partitions converges to ideal values.

44

Category Examples Time slicing MIG

Latency sensitive CAD, Engineering Applications

Interactive Notebooks ¹

Performance intensive Simulation

Low priority CI Runners

¹ Independent workloads can trigger OOM errors between each other. Needs an external
mechanism to control memory usage (similar to kubelet CPU memory checks)

GPU Sharing Use Cases

45

Monitoring

46

https://grafana.com/grafana/dashboards/18288-nvidia-gpu/

https://grafana.com/grafana/dashboards/18288-nvidia-gpu/

47

https://docs.nvidia.com/datacenter/dcgm/2.4/dcgm-api/dcgm-api-field-ids.html
47

Profiling the A100 compute pipeline utilization

dcgm-metrics.csv
...

DCGM_FI_PROF_PIPE_TENSOR_ACTIVE, gauge, Ratio of cycles the tensor (HMMA) pipe is active (in %).
DCGM_FI_PROF_PIPE_FP64_ACTIVE, gauge, Ratio of cycles the fp64 pipes are active (in %).
DCGM_FI_PROF_PIPE_FP32_ACTIVE, gauge, Ratio of cycles the fp32 pipes are active (in %).
DCGM_FI_PROF_PIPE_FP16_ACTIVE, gauge, Ratio of cycles the fp16 pipes are active (in %).

https://docs.nvidia.com/datacenter/dcgm/2.4/dcgm-api/dcgm-api-field-ids.html

48

GPU access using Kubeflow

49

Find more:
● https://ml.docs.cern.c

h/
● https://ml.cern.ch/

… and in the next ML
session :)

https://ml.docs.cern.ch/
https://ml.docs.cern.ch/
https://ml.cern.ch/

50

Conclusions

1. It is easy to create a cluster with GPU nodes
a. The user is abstracted away from having to set any drivers

2. GPU sharing is useful to improve the overall GPU utilization, but it comes
with performance tradeoffs
a. Sharing helps us to offer GPUs to more users
b. For use cases that can fully utilize the GPU, we need to consider

allocating dedicated GPUs

3. Monitoring is very important
a. The current infrastructure is flexible enough to cater for various use

cases

4. For ML workloads consider using Kubeflow

51

Thank you!

52

Bonus slides
Not a service, but very good to know

53

Data Formats

We’ve heard about fp32 and fp64, but what about ML?

54

Data formats Usually ML doesn’t need much precision, so
people starting using half precision (fp16).

Since fp16 has small range (5 bits), Trainings
with fp16 only, very often results in
numerical errors (underflow, overflow).

But ML needs range!

This is how mixed precision was invented:
● What is numerical stable -> done in

fp16
● For the rest -> there is a copy stored in

fp32

You get the speed, while avoiding numerical
errors, but memory consumption is bigger
(V100, T4).

* ML needs range

This is how BFloat16 was created (available for
Ampere and newer)

The range of fp32, the precision less than fp16

* ML doesn’t need a lot of precision!

Using low precision works because ML tries to
minimize the error. As long as it can represent
the number and move towards a smaller error
- low precision will work and bring speedup.

Low precision can be a problem for regression
tasks (when you want to get a real number as
output) - then think about using another
format.

55

Data formats

56

Data formats
tf32 is a solution to use when you still want
the speedup of bf16, but with a bigger
precision.

Things to keep in mind
● This is an NVIDIA solution (amd still not

very clear what is the current state)
● not existing on older GPUs

57

Exercises Time

58

● Group 1
○ Shahzaib Aamir
○ Berk Balci
○ Nayana Bangaru
○ Gábor Bíró
○ Abhishek Bohare
○ Marco Buonsante

● Group 2
○ Gianluca De Bonis
○ Elena de la Fuente Garcia
○ Jesse Geens
○ Ediz Genc
○ Panagiotis Georgopoulos
○ Daniel Goncalves Portovedo

● Access the exercises:
● https://indico.cern.ch/event/1441237/contributions/6073469/attachments/2952019/52113

17/exercises

● Group 4
○ Rimsky Alejandro Rojas Caballero
○ Jonathan Samuel
○ Nikolaos Smyrnioudis
○ Lorenzo Valentini
○ Jan Hauke Voss
○ Julian Weick

● Group 5
○ Joao Ramiro
○ Lorenzo Ventura Vagliano
○ Pascal Egner
○ Jakub Jelinek
○ Luis Pelaez Bover
○ Franciska-Leonora Toeroek

● Group 3
○ Panagiotis Gkonis
○ Dmytro Gruzdo
○ Hannes Jakob Hansen
○ Musa Kaymaz
○ Idriss Larbi
○ Manuel Ramirez Garcia

https://indico.cern.ch/event/1441237/contributions/6073469/attachments/2952019/5211317/exercises
https://indico.cern.ch/event/1441237/contributions/6073469/attachments/2952019/5211317/exercises

