Services for Machine Learning
applications (part 2 of 3)

Diana Gaponcic, IT-CD-PI




GPU clusters at CERN




How to create a GPU cluster

$ openstack coe cluster create digaponc-gpu-004 --merge-labels --labels nvidia_gpu_enabled=true




How to create a GPU cluster

$ kubectl get no
NAME STATUS  ROLES AGE  VERSION

digaponc-gpu-004-6zombv4ghhxi-master-0 Ready master 17d v1.30.2
digaponc-gpu-004-6zombv4ghhxi-node-0 Ready <none> 17d v1.30.2

1. By default 2 nodes are deployed: the master and the default worker
node




How to create a GPU cluster

$ kubectl get no
NAME STATUS  ROLES AGE  VERSION

digaponc-gpu-004-6zombv4ghhxi-master-0 Ready master 17d v1.30.2
digaponc-gpu-004-6zombv4ghhxi-node-0 Ready <none> 17d v1.30.2

1. By default 2 nodes are deployed: the master and the default worker

node
2. No GPU yet
a. the cluster is configured to manage GPUs, but we don't get a GPU by

default




GPU flavors

Flavor Name GPU RAM vCPUs Disk Ephemeral Comments
gl.xlarge V100 16 GB 4 56 GB 96 GB [*], deprecated
g1.4xlarge V100 (4x) 64 GB 16 80 GB 528 GB ]

g2.xlarge T4 16 GB 4 64 GB 192 GB [*], deprecated
g2.5xlarge T4 168 GB 28 160 GB 1200 GB "]

g3.xlarge V100S 16 GB 4 64 GB 192 GB ]

g3.4xlarge V100S (4x) 64 GB 16 128 GB 896 GB [*]

g4.p1.40g A100 (1x) 120 GB 16 600 GB - [*1], AMD CPUs
g4.p2.40g A100 (2x) 240 GB 32 1200 GB - [*1], AMD CPUs
g4.p4.40g A100 (4x) 480 GB 64 2400 GB - [*1], AMD CPUs

Consult https://clouddocs.web.cern.ch/gpu overview.html for an up-to-date list of GPU flavors



https://clouddocs.web.cern.ch/gpu_overview.html

Add a GPU node

$ openstack coe nodegroup create digaponc-gpu-004 gpu-t4 --flavor g2.5xlarge --node-count 1

$ kubectl get no
NAME STATUS  ROLES VERSION
digaponc-gpu-004-6zombv4ghhxi-master-0 Ready master vl.30.2

digaponc-gpu-004-6zombv4ghhxi-node-0 Ready <none> vl.30.2
digaponc-gpu-004-gpu-t4-rr5badjdpuyc-node-0  Ready <none> v1.30.2




NVIDIA GPU operator

$ kubectl get pod -n kube-system | grep nvidia
nvidia-container-toolkit-daemonset-8hfwn
nvidia-cuda-validator-dlpmt
nvidia-dcgm-exporter-1m4kn
nvidia-device-plugin-daemonset-9w9xk
nvidia-driver-daemonset-sqs5c
nvidia-operator-validator-7scl5

Running
Completed
Running
Running
Running
Running




nvidia-driver-daemonset
Loads the drivers on the node

nvidia-container-toolkit-ctr

The toolkit includes a container runtime library
and utilities to automatically configure containers to
leverage NVIDIA GPUs.

nvidia-dcgm-exporter + nvidia-operator-validator

NVIDIA Data Center GPU Manager (DCGM) is a
suite of tools for managing and monitoring NVIDIA
datacenter GPUs. It exposes GPU metrics exporter
for Prometheus leveraging NVIDIA DCGM.

nvidia-device-plugin-daemonset

Allows to automatically:
1. Expose the number of GPUs
on each nodes of your cluster
2. Keep track of the health of
your GPUs
3. Run GPU enabled containers
in your Kubernetes cluster.

This is what allows NVIDIA GPUs to
be requested by a container using
the nvidia.com/gpu resource type.

nvidia-cuda-validator
Validates that the stack
installation worked




Node feature discovery

$ kubectl get pod -n kube-system | grep node-feature-discovery
cern-magnum-node-feature-discovery-gc-7985chd94b-q499t
cern-magnum-node-feature-discovery-master-7bbccf9b68-f jpp8
cern-magnum-node-feature-discovery-worker-5qjzq
cern-magnum-node-feature-discovery-worker-ghbrc

1/1
1/1
IVA
1/1

Running
Running
Running
Running




Node feature discovery

local. feature:
elements:

nvidia.com/cuda.driver-version.full: 550.54.15
nvidia.com/cuda.driver-version.major: "550"
nvidia.com/cuda.driver-version.minor: "54"
nvidia.com/cuda.driver-version.revision: "15"
nvidia.com/cuda.driver.major: "550"
nvidia.com/cuda.driver.minor: "54"
nvidia.com/cuda.driver.rev: "15"

"X X | nvidia.com/cuda.runtime-version.full: "12.4"
nvidia.com/cuda.runtime-version.major: "12"
nvidia.com/cuda.runtime-version.minor: "4"

$ kubectl get pod -n kuk nvidia.com/cuda.runtime.major: "12"

cern—magnum—node—feature nvidia.com/cuda.runtime.minor: "4"

deor nvidia.com/gfd.timestamp: "1728992460"
cern-magnum-node-teature nvidia.com/gpu.compute.major: "7"

cern-magnum-node-feature nvidia.com/gpu.compute.minor: "5"

cern-magnum-node-feature nvidia.com/gpusgounts: S
nvidia.com/gpu.family: turing
nvidia.com/gpu.machine: OpenStack-Compute
nvidia.com/gpu.memory: "15360"
nvidia.com/gpu.mode: compute
nvidia.com/gpu.product: Tesla-T4
nvidia.com/gpu.replicas: "1"
nvidia.com/gpu.sharing-strategy: none
nvidia.com/mig.capable: "false"
nvidia.com/mig.strategy: mixed
nvidia.com/mps.capable: "false"
nvidia.com/vgpu.present: "false"




Allocatable:

nvidia.com/gpu: 1

apiVersion:
kind:
metadata:
name:
spec:
containers:
- name:
image:
command: ["sleep", "inf"]
resources:
limits:
nvidia.com/gpu:

root@tf-gpu:/# nvidia-smi
Tue Oct 29 14:09:00 2024

| NVIDIA-SMI 550.54.15

| Processes:
GI

Driver Version: 550.54.15 CUDA Version

--------------- s e ——

Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC
Pwr:Usage/Cap | Memory-Usage | GPU-Util

16W / ToW | OMiB / 15360MiB |

Type Process name




Tainting

Taint Nodes

With kubernetes templates 1.24+, the gpu-operator helm chart does not taint GPU nodes which will allow all workloads to
run in this nodes. We suggest to taint the nodes explicitly by adding the following taint to the GPU nodegroups:

node-role.kubernetes.io/gpu=true:NoSchedule

Disclaimer:
We will have automatic tainting in the next release

13




Let's run some workloads




Example Use Cases
(very different GPU consumption behaviour)

Badly coded simulation job: Never know what to expect from a notebook user:

e Potential memory leaks
e Poorly considered batch size
e GPU memory locked by an idle notebook

e Low average GPU usage (CPU
dependant workload)

e Needs 10 GiB VRAM (8 + 2 dynamic)

Long running process

An inference service which is occasionally
triggered by outside events:

Spiky and unpredictable execution
Mostly sits idle

Saturates the GPU cores

Max 10 GiB VRAM (2 + 8 dynamic)

* All use cases were run on a
CERN Kubernetes cluster with 1
NVIDIA A100 40GB GPU



Onboard Only Use Case 1 = Dedicated GPU

GPU Utilization

Badly coded simulation job:

Low average GPU usage (CPU
dependant workload)

e Needs 10 GiB VRAM (8 + 2

dynamic)

Long running process

Memory Utilization

e GPU underutilized
e Steady memory utilization ~ 20%

@)

7



Dedicated GPU drawbacks

e Dedicated GPUs => small/limited GPU offering
e Some use cases cannot fully utilize a GPU => idle time




Dedicated GPU drawbacks

e Dedicated GPUs => small/limited GPU offering
e Some use cases cannot fully utilize a GPU => idle time

How to improve?




GPU Sharing

1. Time-slicing




Time-slicing

e The scheduler gives an equal share of time to all GPU processes and
alternates them in a round-robin fashion.

e The memory is shared between the processes

e The compute resources are assigned to one process at a time

T T2 T3 T4 T T2 T3 T4 T T2 )
Time

v

time
slice

GPU

Compute

Memory used by Memory used by Memory used by Memory used by
Process 1 Process 2 Process 3 Process 4




apiVersion:
Allocatable: kind:
—_— _ _ metadata:
nvidia.com/gpu: 1 dev1c§P1ug1n: name:
conf1g: spec:
name: .
containers:
- name:
image:
apiVersion:
kind: command: ["sleep", "inf"]
metadata: resources:
name: lLimits: __ __ __ 1
namespace: ' nvidia.com/gpu.shared: 1,
data: ==
slice-4: |-
version: vi1 +
sharing:
timeSlicing:
renameByDefault: true Allocatable:
failRequestsGreaterThanOne: true
Fosoyrees — — — — — - -
resources: | nvidia.com/gpu: 0
| - name: nvidia.com/gpu hvidia.com/gpushared: 4
| replicas: 4 | ______

kubectl label node <node-name> nvidia.com/device-plugin.config=slice-4




Use case 1

e GPU underutilized
e Steady memory
utilization ~ 20%

@)

\




GPU Utilization

Use cases
1&2

Use case 1

* Time-Slicing GPU
Sharing

Memory Utllization

GPU underutilized

Steady memory
utilization ~ 20% e Improved GPU utilization

e Better memory consumption (~ 50 %)




GPU Utilization

cases
1&2&3

* Time-Slicing
GPU Sharing

Memory Utilization

GPU utilization 100%

... Perfect, right?

No.

Use case 3 used all the
memory, and starved the
other 2 processes.




drowning

Such a
beautiful




Time-Slicing

Advantages

Disadvantages

Works on a wide range of NVIDIA
architectures

An easy way to set up GPU
concurrency

An unlimited number of partitions

No process/memory isolation

No ability to set priorities

Inappropriate for latency-sensitive
applications (ex: desktop rendering
for CAD workloads)




GPU Sharing

2. Multi Instance GPU




Multi Instance GPU

Multi Instance GPU (MIG) can partition the GPU into up to seven instances,
each fully isolated with its own high-bandwidth memory, cache, and

compute cores.

7g.40gb

MIG Profiles on A100

1 x 7g.40gb
or

2 x 3g.20gb
or

3 x 2g.10gb
or

7 x 1g.5gb



https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

NVIDIA MIG provides multiple strategies for allowing
users to reference the graphic card resources:

e mixed: Different resource types are enumerated for every MIG device
available. Ex: nvidia.com/mig-3g.20gb

e single: MIG devices are enumerated as nvidia.com/gpu, and map to
the MIG devices available on that node, instead of the full GPUs.

e none: No distinction between GPUs with MIG or without. The

available devices are listed as nvidia.com/gpu.




Allocatable:

nvidia.com/gpu: 1

# values.yaml in NVIDIA gpu operator
Helm chart

—>|m1 :
strategy: mixed_I
migManager: ™~
config:
name: nvidia-mig-config

apiVersion: v1
kind: ConfigMap
metadata:
name: nvidia-mig-config
data:
config.yaml: |
version: v1
mig-configs:
# A100-40GB
[3g.26gb-2x2g.16gb: |
- devices: all |
mig-enabled: true |
| mig-devices: |
"2g.10gb": 2 |

|__"39:20gb7: 1

apiVersion: v1
kind: Pod
metadata:
name: tf-gpu
spec:
containers:
- name: tf
image:
tensorflow/tensorflow:latest-gpu
command: ["sleep", "inf"]
resources:
limits: __ —_

T

nvidia.com/gpu: 0

|nvidia.com/mig-2g.10gb: 21
lnvidia.com/mig—Bg.ZOgb: 1]

Allocatable:

kubectl label nodes <node-name> nvidia.com/mig.config=3g.20gb-2x2g.10gb




GPU Utllization

> Use Case 1 | . Every process:
-> Use Case 2 \| | | e |[sisolated
-> Use Case 3 | | | |
0] e Saturates own resources
* MIG GPU | | .
Sharing | | e Cannotinfluence other
| processes

... Perfect, right?

Memory Utilization

Use case 3 starved itself,
use cases 1 & 2 continued
running without issues!




‘ AAAH!I
AAAAHH!




Hardware level sharing - MIG

Advantages Disadvantages

Hardware isolation allows processes to Only available for Ampere, Hopper, and
run securely in parallel and not influence  Blackwell architecture

each other

Monitoring and telemetry data available  Reconfiguring the partition layout

at partition level requires all running processes to be
evicted

Allows partitioning based on use cases, * Potential loss of available memory

making the solution flexible depending on chosen profile layout

* Not a risk if the partitioning layout is chosen in an informed way after careful
consideration.

@) 33

SZ




We established that GPU
sharing increases overall usage.

But how do we share in the best way?




But how do we share in the best way?

1. Summarize in your team all workloads that need GPUs.
Run them on one cluster and collocate them using
time-slicing and MIG.

2. Single point of GPU Access across multiple teams




S?ngle poin‘t of GPU access

/ v ‘training

s|mu|at;on$ in{:erer\ce Gl B Runners

1. GPUs are always in-use
a. Assoon as a GPU is released by an user, it is
reassigned to another one requesting a GPU
2. People can get access to multiple types of GPUs, or even
other accelerators (TPUs, IPUs) through public cloud.

36




GPU sharing tradeofts




Benchmarked script:

e Simulation script that generates collision events. Find more

e Built with Xsuite (Suite of python packages for multiparticle simulations
for particle accelerators)

e Very heavy on GPU usage

e Low on memory accesses

e Low on CPU-GPU communication

Environment:

NVIDIA A100 40GB PCle GPU
Kubernetes version 1.22
Cuda version utilized: 11.6
Driver Version: 470.129.06



https://kubernetes.docs.cern.ch/blog/2023/03/20/efficient-access-to-shared-gpu-resources-part-3/#compute-intensive-particle-simulations

Time-slicing Performance Analysis

Number of
particles

15000 000
20 000 000

30 000 000

Shared x1
[seconds]

7712

99.91

152.61

Expected Shared x2 =
Shared x1 * 2
[seconds]

154.24

199.82

305.22

Actual Shared
X2 [seconds]

212.71

276.23

423.08

Loss [%]

37.90

38.23

38.61

The GPU context switching caused a ~38% performance loss




Time-slicing Performance Analysis

Number of | Shared x2 Shared x4 | Loss [%] Number of

particles [seconds] [seconds] particles

15000 000 | 212.71 421.55 0 15 000 000
20 000 000 | 276.23 546.19 0 20 000 000
30 000 000 | 423.08 838.55 0 30 000 000

Shared x4
[seconds]

421.55
546.19

838.55

Shared x8 Loss [%]
[seconds]

838.22 0
1087.99 0
1672.95 0

There is no additional performance loss when sharing the GPU between more
processes (4, 8, and even more).

@)

\

)




MIG Performance Analysis

6912 CUDA
Cores
whole GPU ' 108 Streaming
No MIG > Multiprocessors ||
432 Tensor
—>
Cores
9.25% Loss
.| 6272 CUDA
v g Cores
whole GPU :
MIG enabled || 20 Streaming
(79.40gb) Multiprocessors
392 Tensor
Cores




MIG Performance Analysis

Number of Whole GPU, Whole GPU, Loss [%]
particles no MIG with MIG (7g.40gb)

[seconds] [seconds]
5000 000 26.365 28.732 8.97 %
10 000 000 51.135 55.930 9.37 %
15 000 000 76.374 83.184 8.91 %

The theoretical loss of 9.25% is seen experimentally.




MIG Performance Analysis

Number of particles 78.40gb [s] |3g.20gb[s] |[2g.10gb[s] [1g.5gb [s]
5000 000 28.732 62.268 92.394 182.32
10 000 000 55.930 122.864 183.01 362.10
15 000 000 83.184 183.688 273.7 542.3
Number of particles |3g.20gb / 7g.40gb 2g.10gb / 3g.20gb 1g.5gb / 2g.10gb
5000 000 2.16 1.48 1.97
10 000 000 2.19 1.48 1.97
15 000 000 2.20 1.48 1.98
ideal scale 7/3=2.33 3/2=1.5 2/1=2

The scaling between partitions converges to ideal values.




GPU Sharing Use Cases

Category Examples Time slicing MIG

Latency sensitive CAD, Engineering Applications X V
Interactive Notebooks V1 V
Performance intensive Simulation X V
Low priority Cl Runners V V

" Independent workloads can trigger OOM errors between each other. Needs an external
mechanism to control memory usage (similar to kubelet CPU memory checks)




Monitoring




88 General / NvidiaGPU ¢ <8

GPU Utilization GPU Memory Utilization GPU Utilization Tensor Core Utilization

s 7/

#GPUs / MIGs

Memory Utilization Fan Speed
NVIDIA A100-PCIE-40GB

#Timeslicing

gpu.shared

GPU Temperature Power Usage

PCle Tx/Rx Cycles Memory Interface



https://grafana.com/grafana/dashboards/18288-nvidia-gpu/

DCGM_FI_PROF_PIPE_TENSOR_ACTIVE, gauge, Ratio of cycles the tensor (HMMA) pipe is active (in %).
DCGM_FI_PROF_PIPE_FP64_ACTIVE, gauge, Ratio of cycles the fp64 pipes are active (in %).
DCGM_FI_PROF_PIPE_FP32_ACTIVE, gauge, Ratio of cycles the fp32 pipes are active (in %).
DCGM_FI_PROF_PIPE_FP16_ACTIVE, gauge, Ratio of cycles the fp16 pipes are active (in %).

Core Utilization

gitlab-runners-a100-vwh6b6ynnbto-node-0-gpul-tensor
gitlab-runners-a100-vwh6b6ynnbto-node-0-gpu0-fp64
gitlab-runners-a100-vwh6b6ynnbto-node-0-gpu0-fp32

gitlab-runners-a100-vwh6b6ynnbto-node-0-gpu0-fp16
Profiling the A100 compute pipeline utilization
https://docs.nvidia.com/datacenter/dcgm/2.4/dcgm-api/dcgm-api-field-ids.html

@) 47

\



https://docs.nvidia.com/datacenter/dcgm/2.4/dcgm-api/dcgm-api-field-ids.html

GPU access using Kubeflow




< New notebook

s
Jupyter
e’

5]

JupyterLab

An interactive development
environment for notebooks,
code, and data. Ideal for
prototyping and
experimentation

Custom Notebook

CPU/RAM @
Minimum CPU

0.5

v Advanced Options

GPUs

1

VisualStudio Code

A lightweight but powerful
source code editor, redefined
and optimized for building and
debugging modern web and
cloud applications

Minimum Memory Gi

< 1

{-;[ of GPUS

VWV GPU Vendor

2

RStudio

An integrated development
environment for R, a
programming language for
statistical computing and
graphics

4 NVIDIA GPU 10GB

>

Find more;

nttps://ml.docs.cern.c

h/
nttps://ml.cern.ch/

... and in the next ML
session :)



https://ml.docs.cern.ch/
https://ml.docs.cern.ch/
https://ml.cern.ch/

Conclusions

1. Itis easy to create a cluster with GPU nodes
a. The user is abstracted away from having to set any drivers

2. GPU sharing is useful to improve the overall GPU utilization, but it comes

with performance tradeoffs
a. Sharing helps us to offer GPUs to more users
b. For use cases that can fully utilize the GPU, we need to consider

allocating dedicated GPUs

3. Monitoring is very important
a. The currentinfrastructure is flexible enough to cater for various use

cases

4. For ML workloads consider using Kubeflow




Thank you!




Bonus slides

Not a service, but very good to know




Data Formats

We've heard about fp32 and fp64, but what about ML?




Data formats

Sign Range Precision
Bay -~ O A
FP32 8 BITS

|

TF32 Range

TENSOR FLOAT 32 (TF32)

TF32 Precision

f—l_\

8
BFLOAT16 (BF16)

Usually ML doesn't need much precision, so
people starting using half precision (fp16).

Since fp16 has small range (5 bits), Trainings
with fp16 only, very often results in
numerical errors (underflow, overflow).

But ML needs range!

This is how mixed precision was invented:
e What is numerical stable -> done in
fp16
e Forthe rest->there is a copy stored in
fp32

You get the speed, while avoiding numerical
errors, but memory consumption is bigger
(V100, T4).



Data formats

Sign Range Precision
Bay -~ O A
FP32 8 BITS

|

TF32 Range

TENSOR FLOAT 32 (TF32)

8 BITS
BFLOAT16 (BF16)

TF32 Precision

f—l_\

* ML needs range

This is how BFloat16 was created (available for
Ampere and newer)

The range of fp32, the precision less than fp16
* ML doesn't need a lot of precision!

Using low precision works because ML tries to
minimize the error. As long as it can represent

the number and move towards a smaller error
- low precision will work and bring speedup.

Low precision can be a problem for regression
tasks (when you want to get a real number as
output) - then think about using another
format.




Data formats

Sign Range Precision

N N\

\_Y_J

TF32 Range

TENSOR FLOAT 32 (TF32)

TF32 Precision

f_;\

FP16 5 BITS

BFLOAT16 (BF16)

tf32 is a solution to use when you still want
the speedup of bf16, but with a bigger
precision.

Things to keep in mind
e This is an NVIDIA solution (amd still not
very clear what is the current state)
e not existing on older GPUs



Exercises Time




Access the exercises:
https://indico.cern.ch/event/1441237/contributions/6073469/attachments/2952019/52113
17/exercises

Group 1
o  Shahzaib Aamir e Group4 ' .
o Berk Balci o  Rimsky Alejandro Rojas Caballero
o Nayana Bangaru o Jonathan Samuel
o  Gabor Bir6 o  Nikolaos Smyrmo_ud|s
o  Abhishek Bohare e Group3 o  Lorenzo Valentini
o  Marco Buonsante o  Panagiotis Gkonis © Jaq Haukg Voss
o  Dmytro Gruzdo o Julian Weick
o Hannes Jakob Hansen
o  Musa Kaymaz
Group 2 o Idriss Larbi
o  Gianluca De Bonis o Manuel Ramirez Garcia ® Group> .
o  Elena de la Fuente Garcia o Joao Ramiro |
o Jesse Geens o Lorenzo Ventura Vagliano
o  Ediz Genc o Pascal Egner
o  Panagiotis Georgopoulos o Jakub Jelinek
o  Daniel Goncalves Portovedo o Luis Pelaez Bover
o  Franciska-Leonora Toeroek



https://indico.cern.ch/event/1441237/contributions/6073469/attachments/2952019/5211317/exercises
https://indico.cern.ch/event/1441237/contributions/6073469/attachments/2952019/5211317/exercises

