Services for Machine Learning applications (part 3 of 3) Raulian-Ionut Chiorescu IT-CD-PI

Kubeflow Components and Features

Notebooks

- Machine Learning Pipelines
- AutoML Hyperparameter Optimization
- **Distributed Training**
- Tensorboards
- Model Serving

1. Tensorboards

🍘 rchiores (Owner) 🔻

🔒 Home Notebooks

Quick shortcuts	Recent Notebooks	Documentation	
Upload a pipeline Pipelines	No Notebooks in namespace rchiores	Getting Started with Kubeflow Get your machine-learning workflow up and running on Kubeflow	Z
View all pipeline runs Pipelines	Recent Pipelines	MiniKF A fast and easy way to deploy Kubeflow locally	Ø
Create a new Notebook server Notebook Servers	(Tutorial) DSL - Control structures Created 03/10/2024, 14:35:45	Microk8s for Kubeflow Quickly get Kubeflow running locally on native hypervisors	Ø
Yiew Katib Experiments Katib	[Tutorial] Data passing in python components Created 03/10/2024, 14:35:44	Kubeflow on GCP Running Kubeflow on Kubernetes Engine and Google Cloud Platform	Ø
	Recent Pipeline Runs	Kubeflow on AWS Running Kubeflow on Elastic Container Service and Amazon Web Services	Ø
	pipeline.yaml 2024-10-09 15-04-22 Created 09/10/2024, 17:04:22	Requirements for Kubeflow Get more detailed information about using Kubeflow and its components	Ø
	Run of iris_version_at_2024-10-09T14:56:49.802Z (Created 09/10/2024, 16:57:10	L	
	Run of iris (28855) Created 09/10/2024, 16:20:11		
	Run of [Tutorial] DSL - Control structures (9f507) Created 08/10/2024, 14:07:06		
	end-to-end-pipeline 2024-10-04 11-47-45 Created 04/10/2024, 13:47:45		

Dashboard

Activity

Kubeflow Notebooks

Features:

- Fully customizable environments
- Select resources (CPU,MEM,GPU)
- Selectable GPU flavors
- Integrated EOS storage

Use Cases:

- Quick prototyping
- Exploratory data analysis
- Small Model training

github-namespace notebook-server1						
natality-namespace	natality-namespace notebook-server2					
mnist-namespace	notebook-server3 nb1 Nb2					
Kubeflow deployment						
🥳 Ки	bernetes					

Customizing Notebooks

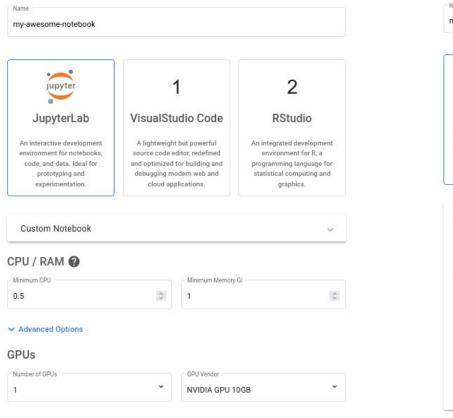
Pre-built Images:

- PyTorch
- TensorFlow
- SciPy

Customization:

- **pip install** additional packages
- Build custom images for specific needs

← New notebook



← New notebook

Name my-awesome-notebook

beflow/kubeflownotebookswg/jupyter-scipy:v1.8.0	-
🗸 Custom Image	
Custom Image	
registry.cern.ch/kubeflow/my-awesome-notebook-imag	e:v1.0
Image pull policy	
	-

~	File	Edit	Minut	Due	Kornol	Cit	Taba	Settings	Holo	
~	THE	Luit	VICW	null	Nemer	Git	Tabs	Setunys	Tielp	

	+ 🗈 ± C 🗞	[2] Launcher X Tensist-e2e.ipynb X +		80
	Filter files by name			
•	/ Kubeflow /	Kubeflow		ø
8	Name Last Modif	Notebook		
	• 🔲 mnist-e2e.ipynb 4 minutes a			
_	• 🔳 tb.ipynb a month a			
	E testinf.lpynb a month a			
	Yt tfjob-gpu.yaml 23 days a			
•	Y: tījob.yaml 23 days a	Python 3 ((pyternal)	- 1	
		Sonsole		
			- 1	
			- 1	

Python 3 (ipykernel) \$_ Other

		\$ Terminal	Text File	Python File Show Contextual Help	

12 Launcher × tb.ipynb × mnist-e2e.ipynb × + 1 C of 20 80/ 冒 notebook.ipynb 🗙 Name 다 다 아 희 🔋 notebook.ipynb ſĊ 🚊 Se Y: * Y: tf from kfp.dsl import Model > Kubeflow **Design the Pipeline** CHANGELOG.md df = pd.read_csv(csv_url, names=col_names) with open(iris_dataset.path, 'w') as f: ! ormbfile.vaml ! ptjob.yaml storage.ipynb from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler df = pd.read_csv(f) if standard scaler: scaler = MinMaxScaler()

File Edit View Run Kernel Git Tabs Settings Help

-

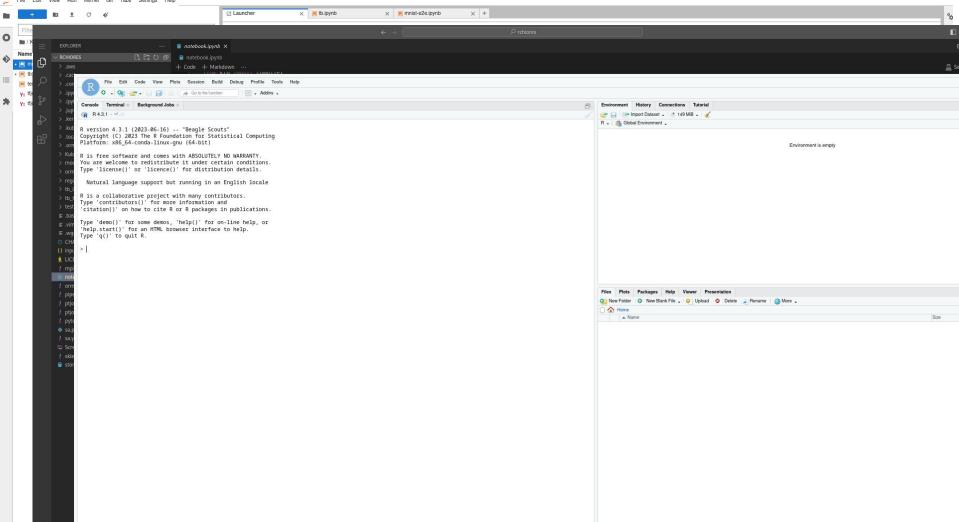
0

۲

🂭 File Edit View Run Kernel Git Tabs Settings Help

٠

≣



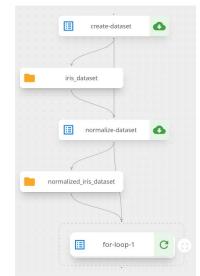
Kubeflow Pipelines

What Are Pipelines?

- Directed acyclic graph (DAG) workflows for ML tasks.
- Flexible dependency management (e.g. parallel training, data streams).

Compared to Notebooks:

- Reproducibility.
- Parallelism for time efficiency.
- Scalability for large datasets and models.



Kubeflow Pipelines

Python script \rightarrow Compiled to YAML \rightarrow Submitted for execution.

Concepts:

- Experiments: Group multiple pipeline runs
- Runs: Individual executions of a pipeline
- Pipeline Parameters: Allow dynamic input (e.g., data paths, hyperparameters)

Wrapping your Python Script with Pipeline Components

```
00
@dsl.component(packages_to_install=['pandas==1.3.5'])
def create_dataset(iris_dataset: Output[Dataset]):
    import pandas as pd
    csv_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
    col_names = [
        'Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'Labels'
   df = pd.read_csv(csv_url, names=col_names)
   with open(iris_dataset.path, 'w') as f:
        df.to_csv(f)
```


Wrapping your Python Script with Pipeline Components

```
.
@dsl.component(packages to install=['pandas==1.3.5', 'scikit-learn==1.0.2'])
def normalize_dataset(
        raise ValueError(
            'Exactly one of standard_scaler or min_max_scaler must be True.')
    import pandas as pd
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.preprocessing import StandardScaler
    with open(input_iris_dataset.path) as f:
    labels = df.pop('Labels')
        scaler = StandardScaler()
    df['Labels'] = labels
    with open(normalized iris dataset.path, 'w') as f:
```


Wrapping your Python Script with Pipeline Components

```
.
@dsl.component(packages to install=['pandas==1.3.5', 'scikit-learn==1.0.2'])
def train model(
    import pandas as pd
    from sklearn.neighbors import KNeighborsClassifier
   y = df.pop('Labels')
```


Defining Your Kubeflow Pipeline

•••

```
@dsl.pipeline(name='iris-training-pipeline')
def my_pipeline(
    standard scaler: bool,
    neighbors: List[int],
    create_dataset_task = create_dataset()
        input_iris_dataset=create_dataset_task.outputs['iris_dataset'],
        standard scaler=standard scaler,
        min_max_scaler=min_max_scaler)
    with dsl.ParallelFor(neighbors) as n_neighbors:
            .outputs['normalized_iris_dataset'],
            n neighbors=n neighbors)
```


Compiling your Python Script into YAML

. if __name__ == '__main__': import kfp.compiler as compiler compiler.Compile().compile(my_pipeline, __file__ + '.yaml')

Pipeline Versions

← New Pipeline

Upload pipeline or pipeline version.

Running your Pipeline

Create a new pipeline Create a new pipeline version under an existing pipeline Select if the new pipeline will be private or shared. Private \bigcirc Shared Upload pipeline with the specified package. Pipeline Name* iris-pipeline **Pipeline Description** Choose a pipeline package file from your computer, and give the pipeline a unique name. You can also drag and drop the file here. For expected file format, refer to Compile Pipeline Documentation. File* -O Upload a file pipeline.yaml **Choose file** Package Url Import by url Code Source Create Cancel

Pipeline Versions							
← New Pipeline							
Upload pipeline or pipeline version.							
O Create a new pipeline O Create a ne							
Select if the new pipeline will be private or shared							
		 _					

		· · · · · · · · · · · · · · · · · · ·
Private	Shared	create-dataset
Upload pipeline with th	he specified package.	
Pipeline Name*		
iris-pipeline		
		iris_dataset
Pipeline Description	on .	
hoose a pipeline pac	kage file from your compute	
ou can also drag and		
or avpacted file form	at, refer to Compile Pipeline	
or expected me forma	at, refer to complie Pipeline	iii normalize-dataset
	- File*	· · · · · · · · · · · · · · · · · · ·
 Upload a file 	pipeline.yaml	
Import by url	Package Url	
Code Source		a construction de la construction d
Create Cancel		for-loop-1

Running your Pipeline

+ Create run

Pipeline Versions Run Type ← New Pipeline Upload pipeline or pipeline version. Running your Pipeline \bigcirc One-off Recurring Create a new pipeline Create a ne Select if the new pipeline will be private or shared **Pipeline Root** Private Shared ()Upload pipeline with the specified package. Pipeline Root represents an artifact repository, refer to Pipeline Root Documentation. Pipeline Name* **Custom Pipeline Root** iris-pipeline ir **Pipeline Description Run parameters** Choose a pipeline package file from your compute You can also drag and drop the file here. Specify parameters required by the pipeline For expected file format, refer to Compile Pipeline 8 min_max_scaler - boolean File* true O Upload a file pipeline.yaml neighbors - list **Open Json** [3,6,9] normali Package Url Editor Import by url standard_scaler - boolean false Code Source Create Cancel Start Cancel

Recurring Pipelines

Automate repetitive tasks:

- Daily model training
- Weekly data refreshes

Triggering Options:

Set intervals, start/end times, or use cron syntax

Run Type

0 One-off Recurring

Run trigger

Choose a method by which new runs will be triggered

Trigger type* Periodic	•
- Maximum concurrent runs*	
10	
Has start date	
Has end date	
Catchup	
Run every 1 🗘 Days 👻	

Run Type

O One-off Recurring

Run trigger

Choose a method by which new runs will be triggered

Trigger type*		
Cron	-	
Maximum concurrent runs*		
10		
Has start date		
Has end date		

L Has	end date				
Catc	hup	2			
Run every	Day	•			
Allov	v editing c	ron expr	ession.	(format is	specified he
– cron expres	sion ———				
000**?					

Note: Start and end dates/times are handled outside of cron.

Model Training

Two Approaches to Model Training:

- Classical (Single-Node) Training
- Distributed Training

Why the Distinction Matters:

Classical: Simpler, but limited by single machine resources Distributed: Scales across multiple nodes for large datasets and models

Classical Training

Overview:

- Training runs on a single node
- Suitable for smaller datasets and models

Limitations:

- Memory and computation constrained by a single machine
- Slower for large models or datasets


```
...
        self.fc1 = nn.Linear(4*4*50, 500)
        self.fc2 = nn.Linear(500, 10)
           print('Train Epoch: {} [{}/{} ({:.0f}%)]\tloss={:.4f}'.format(
            test loss += F.nll loss(output, target, reduction='sum').item() #
```


.

```
FROM registry.cern.ch/kubeflow/kubeflownotebookswg/jupyter-pytorch-cuda-
full:v1.8.0
```

USER root

ENV NB_PREFIX /

```
RUN apt-get -qq update
RUN DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends
apt-utils
```

ENV SHELL /bin/bash

```
COPY requirements.txt /requirements.txt
RUN pip3 install -r /requirements.txt
```

COPY mnist.py /

RUN echo "jovyan ALL=(ALL:ALL) NOPASSWD:ALL" > /etc/sudoers.d/jovyan WORKDIR /home/jovyan USER jovyan

•••

```
apiVersion: "kubeflow.org/v1"
kind: "PyTorchJob"
metadata:
  name: "pytorch-dist-mnist-nccl"
spec:
  pytorchReplicaSpecs:
    Master:
      replicas: 1
      restartPolicy: OnFailure
      template:
        metadata:
          annotations:
            sidecar.istio.io/inject: "false"
        spec:
          containers:
            - name: pytorch
              image: registry.cern.ch/kubeflow/custom-pytorchjob:v1.0
              args: ["--backend", "nccl"]
              resources:
                limits:
                  nvidia.com/gpu: 1
```


How can we make this better?

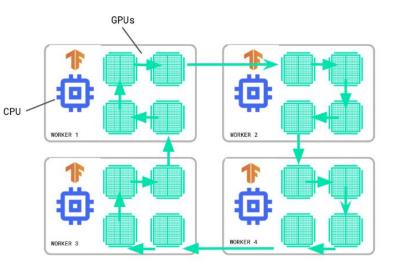
Training jobs run across multiple CPUs/GPUs, either on the same machine or across a cluster

Speeds up training and allows handling of larger datasets/models

- Data Parallelism:
 - Data split across workers
 - Each worker trains on a different subset of the data
- Model Parallelism:
 - Model split across workers
 - Useful for very large models

Distributed Training

Major ML frameworks support **distributed training** Training jobs split across **multiple** local GPUs Kubeflow offers distributed training in Kubernetes TFJob, PytorchJob, MXNetJob, MPIJob, XGBoostJob Jobs split across **multiple** cluster GPUs



....

```
restartPolicy: Never
      - name: pytorch
           nvidia.com/gpu: 1
        image: registry.cern.ch/kubeflow/custom-pytorchjob:v1.0
     - name: pytorch
           nvidia.com/gpu: 1
        image: registry.cern.ch/kubeflow/custom-pytorchjob:v1.0
```


Classical vs Distributed Training

Feature	Classical Training	Distributed Training
Resources	Limited to the resources of a single node	Scales across multiple nodes
Scalability	Limited	High
Dataset Size	Small/Moderate	Large
Training Speed	Slower	Faster
Complexity	Simple	Requires orchestration

When to Use Which?

Classical: Prototyping, small models/datasets Distributed: Large-scale models, big datasets, or time-sensitive tasks

Katib: Hyperparameter Optimization

Parameters that define model structure and training process:

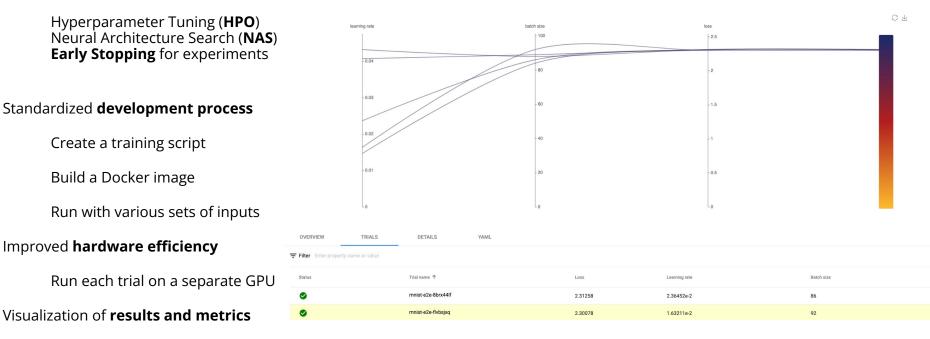
- Learning rate
- Number of layers/nodes
- Activation functions
- They are not learned during training but must be optimized

Why is HPO Important?

- Improves model accuracy and performance
- Reduces training time by finding optimal values efficiently

Katib: Hyperparameter Optimization

Katib is Kubeflow's automated machine learning (AutoML) tool.

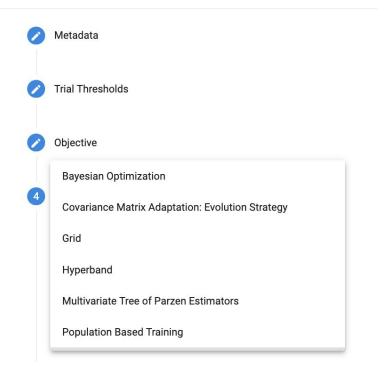


Katib Hyperparameter Optimization

Algorithms

Random Search Bayesian Optimization Tree of Parzen Estimators Hyperband .. and more

← Create an Experiment



Neural Architecture Search (NAS)

Automates the design of neural network architectures.

Optimizes:

- Number of layers
- Types of operations (e.g., convolutions, pooling)
- Connections between layers

Why Use NAS?

Manual architecture design is **time-consuming**

NAS helps discover architectures that **balance performance** and **resource efficiency** (e.g. accuracy, inference time)

NAS in Katib

Concepts:

Search Space: Possible architectures to explore Optimization Objective: maximizing **accuracy** or minimizing **loss**

Algorithms: Efficient Neural Architecture Search (**ENAS**) Differentiable Architecture Search (**DARTS**)

Name	darts-cpu		
Status	Experiment has succeeded because max trial count has reached		
Best trial	darts-cpu-xij4n5q7		
Best trial's params	algorithm-settings: {num_epochs': 1', 'w_lr': 0.025, 'w_lr_min': 0.001, 'w_momentum': 0.9, 'w_weight_decay': 0.0003, 'w_grad_clip': 5.0, 'alpha_lr': 0.0003, 'alpha_weight_decay': 0.001, 'batch_size': 128, 'num_workers': 4, 'init_channels': 1', 'print_step': 50, 'hum_nodes': 1', 'stem_multiplier': 1'}	search-space: ['max_pooling_3x3']	num-layers: 1
Best trial performance	Best-Genotype: Genotype(normal=[[(max_pooling_3x3;1),(max_pooling_3x3;0)][].normal_concat=range(2,3),reduce=[].reduce_concat=range(2,3))		

Tensorboards

Measurements and visualizations for ML workloads Track loss and accuracy Visualize model graph View custom metrics

Kubeflow allows creation of **Tensorboard servers** Monitor model training real-time

Training from any Kubeflow component

TensorBoard SCAL				
Show data download links		Q Filter tags (regula	ar expressions supported)	
Ignore outliers in chart scall Tooltip sorting method: default	rng ▼	epoch_accuracy epoch_accuracy tag: epoch_accuracy		
Smoothing				
	0.6	0.999	~~~~	
Horizontal Axis		0.997		
STEP RELATIVE WAL	L	0.995		
Runs Write a regex to filter runs		0 10 20 30 40 50 60 70 80 90 100 C3		
 ✓ ○ train ✓ ○ validation 				
TOGGLE ALL RUNS				
/tensorboard_logs/		tag: epoch_loss	M	

Deploy a server to run inference via http requests

curl -v -H "Host: host" "http://host_ip/v1/models/mnist:predict" -d @./input.json **Serverless architecture**

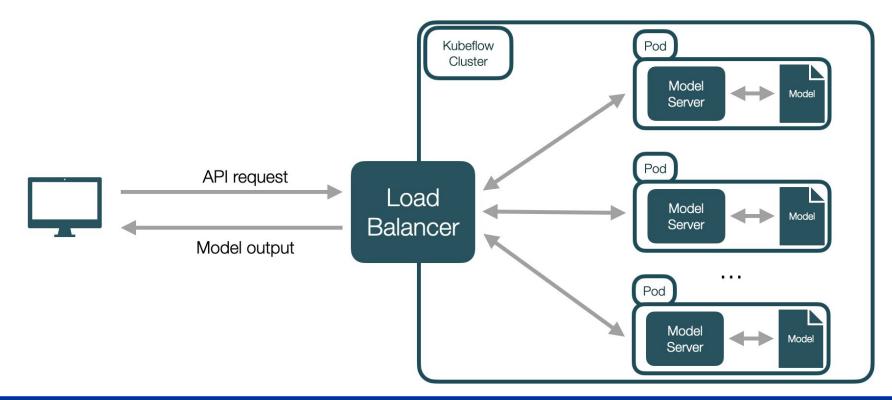
Automatic scaling per number of requests Provided via **KServe** component

Supports major ML frameworks: TensorFlow, PyTorch, SKLearn, ONNX, Triton, etc.

Enables multi-model serving in the same service

Ideal for use cases requiring access to various models simultaneously

Model Serving



Model Autoscaling

Why Autoscaling?

Efficient resource usage Automatically scales based on traffic

Easy to Configure :

Add resource limits in YAML:

Conclusions

- Kubeflow Streamlines the Entire ML Lifecycle
 - From prototyping in notebooks to deploying models as scalable APIs, Kubeflow simplifies and integrates every stage of the machine learning process.
- Pipelines Enable Reproducible and Automated Workflows
 - By defining ML tasks as pipelines, workflows are reproducible, automated, and easy to manage.
- Distributed Training Unlocks Scalability
 - Kubeflow's support for distributed training with PyTorch and TensorFlow training large models efficiently by leveraging multiple nodes and GPUs.
- Katib Automates Hyperparameter and Architecture Optimization
 - Katib reduces the manual effort of tuning models by automating hyperparameter search and neural architecture design, leading to better-performing models.
- Serving Provides Scalable and Efficient Model Deployment
 - Models are deployed as REST APIs with built-in support for autoscaling, multi-model serving, and GPU acceleration, ensuring reliable and fast inference.

Where to find us

- <u>https://ml.docs.cern.ch/</u>
- <u>https://ml.cern.ch/</u>
- <u>Mattermost</u>

Thank You!

Demo Time

Demo Materials

- MNIST-End-to-End Pipeline
- <u>PytorchJob Distributed</u>
- Flower InferenceService

