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Kubeflow Notebooks

Features:

● Fully customizable environments
● Select resources (CPU,MEM,GPU)
● Selectable GPU flavors
● Integrated EOS storage

Use Cases:

● Quick prototyping
● Exploratory data analysis 
● Small Model training
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Customizing Notebooks

Pre-built Images:

● PyTorch
● TensorFlow
● SciPy

Customization:

● pip install additional packages
● Build custom images for specific needs
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Kubeflow Pipelines

What Are Pipelines?

● Directed acyclic graph (DAG) workflows for ML tasks.
● Flexible dependency management (e.g. parallel training, data streams).

Compared to Notebooks:

● Reproducibility.
● Parallelism for time efficiency.
● Scalability for large datasets and models.
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Kubeflow Pipelines

Python script → Compiled to YAML → Submitted for execution.

Concepts:

● Experiments: Group multiple pipeline runs
● Runs: Individual executions of a pipeline
● Pipeline Parameters: Allow dynamic input (e.g., data paths, hyperparameters)
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Wrapping your Python Script with Pipeline Components
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Wrapping your Python Script with Pipeline Components
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Wrapping your Python Script with Pipeline Components
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Defining Your Kubeflow Pipeline
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Compiling your Python Script into YAML
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Running your Pipeline 
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Running your Pipeline 
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Running your Pipeline 
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Recurring Pipelines

Automate repetitive tasks:

● Daily model training
● Weekly data refreshes

Triggering Options:

Set intervals, start/end times, or use cron syntax
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Model Training 

Two Approaches to Model Training:

● Classical (Single-Node) Training
● Distributed Training

Why the Distinction Matters:

Classical: Simpler, but limited by single machine resources
Distributed: Scales across multiple nodes for large datasets and models
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Classical Training 

Overview:

● Training runs on a single node
● Suitable for smaller datasets and models

Limitations:

● Memory and computation constrained by a single machine
● Slower for large models or datasets
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How can we make this better?
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Distributed Training 

Training jobs run across multiple CPUs/GPUs, either on the same machine or across a cluster

Speeds up training and allows handling of larger datasets/models

● Data Parallelism:
○ Data split across workers
○ Each worker trains on a different subset of the data

● Model Parallelism:
○  Model split across workers
○  Useful for very large models
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Distributed Training

Major ML frameworks support distributed training

Training jobs split across multiple local GPUs

Kubeflow offers distributed training in Kubernetes

TFJob, PytorchJob, MXNetJob, MPIJob, XGBoostJob

Jobs split across multiple cluster GPUs
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Classical vs Distributed Training

When to Use Which?

Classical: Prototyping, small models/datasets
Distributed: Large-scale models, big datasets, or time-sensitive tasks
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Feature Classical Training Distributed Training

Resources Limited to the resources of 
a  single node

Scales across multiple 
nodes

Scalability Limited High

Dataset Size Small/Moderate Large

Training Speed Slower Faster

Complexity Simple Requires orchestration



Katib: Hyperparameter Optimization

Parameters that define model structure and training process:

●  Learning rate
●  Number of layers/nodes
●  Activation functions
●  They are not learned during training but must be optimized

Why is HPO Important?

● Improves model accuracy and performance
● Reduces training time by finding optimal values efficiently
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Katib: Hyperparameter Optimization

Katib is Kubeflow's automated machine learning (AutoML) tool.

Hyperparameter Tuning (HPO)
Neural Architecture Search (NAS)
Early Stopping for experiments

Standardized development process

Create a training script

Build a Docker image

Run with various sets of inputs

Improved hardware efficiency

Run each trial on a separate GPU

Visualization of results and metrics
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Katib Hyperparameter Optimization

Algorithms

Random Search
Bayesian Optimization
Tree of Parzen Estimators
Hyperband
.. and more
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Neural Architecture Search (NAS)

Automates the design of neural network architectures.

Optimizes:

● Number of layers
● Types of operations (e.g., convolutions, pooling)
● Connections between layers

Why Use NAS?

Manual architecture design is time-consuming
NAS helps discover architectures that balance performance and resource efficiency (e.g. 

accuracy, inference time)
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NAS in Katib

Concepts:

Search Space: Possible architectures to explore
Optimization Objective:  maximizing accuracy or minimizing loss

Algorithms:
    Efficient Neural Architecture Search (ENAS)
    Differentiable Architecture Search (DARTS)
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Tensorboards

Measurements and visualizations for ML workloads
Track loss and accuracy
Visualize model graph
View custom metrics

Kubeflow allows creation of Tensorboard servers
Monitor model training real-time
Training from any Kubeflow component
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Model Serving

Deploy a server to run inference via http requests
curl -v -H “Host: host” “http://host_ip/v1/models/mnist:predict" -d @./input.json

Serverless architecture
Automatic scaling per number of requests

Provided via KServe component

Supports major ML frameworks: TensorFlow, PyTorch, SKLearn, ONNX, Triton, etc.

Enables multi-model serving in the same service 
Ideal for use cases requiring access to various models simultaneously
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Model Serving
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Model Autoscaling

Why Autoscaling?

Efficient resource usage
Automatically scales based on traffic

Easy to Configure :

Add resource limits in YAML:
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Conclusions

● Kubeflow Streamlines the Entire ML Lifecycle
○ From prototyping in notebooks to deploying models as scalable APIs, Kubeflow simplifies and integrates 

every stage of the machine learning process.

● Pipelines Enable Reproducible and Automated Workflows
○ By defining ML tasks as pipelines, workflows are reproducible, automated, and easy to manage.

● Distributed Training Unlocks Scalability
○ Kubeflow’s support for distributed training with PyTorch and TensorFlow training large models efficiently 

by leveraging multiple nodes and GPUs.

● Katib Automates Hyperparameter and Architecture Optimization
○ Katib reduces the manual effort of tuning models by automating hyperparameter search and neural 

architecture design, leading to better-performing models.

● Serving Provides Scalable and Efficient Model Deployment
○ Models are deployed as REST APIs with built-in support for autoscaling, multi-model serving, and GPU 

acceleration, ensuring reliable and fast inference.
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Where to find us

● https://ml.docs.cern.ch/ 
● https://ml.cern.ch/ 
● Mattermost
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https://ml.docs.cern.ch/
https://ml.cern.ch/
https://mattermost.web.cern.ch/it-dep/channels/ml


Thank You!

43



Demo Time
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Demo Materials

● MNIST-End-to-End Pipeline 

● PytorchJob - Distributed

● Flower - InferenceService
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https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/blob/master/pipelines/mnist/mnist-e2e.ipynb?ref_type=heads
https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/blob/master/training/pytorchjob/mnist/pytorchjob-cpu.yaml?ref_type=heads
https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/tree/master/serving/single-model?ref_type=heads

