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Kubeflow Notebooks

Featu res. github-namespace notebook-server1

e Fully customizable environments

° Se|ect resources (CPU MEM GPU) natality-namespace | notebook-server2

e Selectable GPU flavors

° Integrated EOS Storage notebook-server3

mnist-namespace
nb1 Nb2
Use Cases:
Kubeflow deployment
e Quick prototyping
e Exploratory data analysis Kubernetes

e Small Model training




Customizing Notebooks

Pre-built Images:

e PyTorch
e TensorFlow
e SciPy

Customization:

e pip install additional packages
e Build custom images for specific needs
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Kubeflow Pipelines

What Are Pipelines?

e Directed acyclic graph (DAG) workflows for ML tasks.
e Flexible dependency management (e.g. parallel training, data streams).

Compared to Notebooks: = ™ e &
e Reproducibility. s
e Parallelism for time efficiency.
o Scalability for large datasets and models. g | —

nnnnn lized_iris_dataset

for-loop-1 &




Kubeflow Pipelines

Python script — Compiled to YAML — Submitted for execution.

Concepts:

e Experiments: Group multiple pipeline runs
e Runs: Individual executions of a pipeline
e Pipeline Parameters: Allow dynamic input (e.g., data paths, hyperparameters)




Wrapping your Python Script with Pipeline Components

000

@dsl.component(packages_to_install=['pandas==1.3.5'])
def create_dataset(iris_dataset: Output[Dataset]):
import pandas as pd

csv_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data’
col_names = [

‘Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'Labels’

df = pd.read_csv(csv_url, names=col_names)

1 £

with open(iris_dataset.path, 'w') as

di.tofcsv(fﬂ




Wrapping your Python Script with Pipeline Components

l=['pandas==1.3.5"', 'scikit-learn==1.0.2'])
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Wrapping your Python Script with Pipeline Components

L1=['pandas==1.3.5"', 'scikit-learn==1.0.2'])

IDEY 1,

ection import t
import KNei

.path) as

) )
lel.path, 'wb') as
.dump( s 1)




Defining Your Kubeflow Pipeline

o0

@dsl.pipeline( ='iris-training-pipeline')
def my_pipeline(

(

.outputs['iris_dataset'],




Compiling your Python Script into YAML

‘__main
fp.compiler as
ler.Compiler().compile(




Pipeline Versions

< New Pipeline
Upload pipeline or pipeline version.

Running your Pipeline

@ Create a new pipeline O Create a new pipeline version under an existing pipeline

Select if the new pipeline will be private or shared.
@ Private O Shared

Upload pipeline with the specified package.

Pipeline Name*

iris-pipeline
Pipeline Description

Choose a pipeline package file from your computer, and give the pipeline a unique name.
You can also drag and drop the file here.

For expected file format, refer to Compile Pipeline Documentation.

File*

® Upload afile pipeline.yaml Choose file

O Import by url

Code Source

m cancel




Pipeline Versions

+ Create run

< New Pipeline

Ru n n | ng you r PI pe | | n e Upload pipeline or pipeline version.

@ Create a new pipeline O Create a n¢

Select if the new pipeline will be private or shared
@® rrivate (O shared : create-dataset

Upload pipeline with the specified package.

Pipeline Name*
iris-pipeline

iris_dataset
Pipeline Description

Choose a pipeline package file from your compute
You can also drag and drop the file here.

For expected file format, refer to Compile Pipeline .
normalize-dataset

File*

® Upload afile pipeline.yaml

(O mport by url U normalized_iris_dataset

Code Source

s B for-loop-1




Pipeline Versions

< New Pipeline

Upload pipeline or pipeline version.

Running your Pipeline

@ Create a new pipeline O Create a n¢

Select if the new pipeline will be private or shared
@ Private O Shared

Upload pipeline with the specified package.

Pipeline Name*
iris-pipeline
Pipeline Description

Choose a pipeline package file from your compute

You can also drag and drop the file here.

For expected file format, refer to Compile Pipeline

File*

® Upload afile pipeline.yaml

O Import by url

Code Source

Run Type
@ One-off O Recurring

E Pipeline Root

Pipeline Root represents an artifact repository, refer to Pipeline Root Documentation.

D Custom Pipeline Root

Run parameters

Specify parameters required by the pipeline

“ : min_max_scaler - boolean
true

neighbors - list

[3,6,9]

normali

standard_scaler - boolean

false

Open Json
Editor



Recurring Pipelines

Automate repetitive tasks:

e Daily model training
o Weekly data refreshes

Triggering Options:

Set intervals, start/end times, or use cron syntax




Run Type
O One-off @ Recurring

Run trigger

Choose a method by which new runs will be triggered
Trigger type*

Periodic

Maximum concurrent runs*

10

D Has start date

[:| Has end date

Catchup 0

Run every

Run Type
O One-off @ Recurring

Run trigger

Choose a method by which new runs will be triggered
Trigger type™

Cron

Maximum concurrent runs*

10

[:] Has start date

D Has end date

Catchup 0

Ri
un every Day -

D Allow editing cron expression. (format is specified here)

Note: Start and end dates/times are handled outside of cron.



Model Training

Two Approaches to Model Training:

e C(lassical (Single-Node) Training
e Distributed Training

Why the Distinction Matters:

Classical: Simpler, but limited by single machine resources
Distributed: Scales across multiple nodes for large datasets and models




Classical Training

Overview:

e Training runs on a single node
e Suitable for smaller datasets and models

Limitations:

e Memory and computation constrained by a single machine
e Slower for large models or datasets
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200

FROM registry.cern.ch/kubeflow/kubeflownotebookswg/jupyter-pytorch-cuda-
full:v1.8.0

USER root
V. NB_PREFIX /
RUN apt-get -qq update
DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends
-utils

ENV SHELL /bin/bash

requirements.txt /requirements.txt
pip3 install -r /requirements.txt

COPY mnist.py /

RUN echo "jovyan ALL=(ALL:ALL) NOPASSWD:ALL" > /etc/sudoers.d/jovyan
R /home/jovyan




b OO

apiVersion: "kubeflow.org/v1l"
kind: "PyTorchJob"
metadata:
name: "pytorch-dist-mnist-nccl”
spec:
ytorchReplicaSpecs:
Master:
replicas: 1
restartPolicy: OnFailure
ate:

decar.istio.10/inject: "false"

contalners:
- name: pytorch
image: registry.cern.ch/kubeflow/custom-pytorchjob:v1.0
["--backend", "nccl"]

nvidia.com/gpu: 1




How can we make this better?




Distributed Training

Training jobs run across multiple CPUs/GPUs, either on the same machine or across a cluster
Speeds up training and allows handling of larger datasets/models
e Data Parallelism:

o Data split across workers
o Each worker trains on a different subset of the data

e Model Parallelism:
o Model split across workers
o  Useful for very large models




Distributed Training

Major ML frameworks support distributed training

Training jobs split across multiple local GPUs 1
Kubeflow offers distributed training in Kubernetes o "
TFJob, Pytorchjob, MXNetjob, MPljob, XGBoostjob 1
Jobs split across multiple cluster GPUs ) n

RRRRRRR
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python3

pytorchjob:v1.0




Classical vs Distributed Training

Feature

Resources

Scalability
Dataset Size
Training Speed
Complexity

When to Use Which?

Classical Training

Limited to the resources of
a single node

Limited
Small/Moderate
Slower

Simple

Classical: Prototyping, small models/datasets
Distributed: Large-scale models, big datasets, or time-sensitive tasks

@)

~7

Distributed Training

Scales across multiple
nodes

High
Large
Faster

Requires orchestration

31




Katib: Hyperparameter Optimization

Parameters that define model structure and training process:

Learning rate

Number of layers/nodes

Activation functions

They are not learned during training but must be optimized

Why is HPO Important?

e Improves model accuracy and performance
e Reduces training time by finding optimal values efficiently




Katib: Hyperparameter Optimization

Katib is Kubeflow's automated machine learning (AutoML) tool.

Hyperparameter Tuning (HPO) ..
Neural Architecture Search (NAS) [
Early Stopping for experiments ——— e

Standardized development process
Create a training script
Build a Docker image

Run with various sets of inputs

OVERVIEW TRIALS DETAILS YAML

Improved hardware efficiency _—

Learningrte ~ Batchsize

Run each trial on a separate GPU ™
0 mnist-e2e-8brx44lf 281256 — "

(V] mnist-e2e-flvbsjxq 2.30078 1.63211e2

Visualization of results and metrics

@)

33




Katib Hyperparameter Optimization '
« Create an Experiment

o Metadata
Algorithms

Random Search 6 Trial Thresholds

Bayesian Optimization

Tree of Parzen Estimators @ objective
Hyperband
Bayesian Optimization
..and more o
Covariance Matrix Adaptation: Evolution Strategy
Grid
Hyperband

Multivariate Tree of Parzen Estimators

Population Based Training




Neural Architecture Search (NAS)

Automates the design of neural network architectures.
Optimizes:
e Number of layers

e Types of operations (e.g., convolutions, pooling)
e Connections between layers

Why Use NAS?
Manual architecture design is time-consuming

NAS helps discover architectures that balance performance and resource efficiency (e.g.
accuracy, inference time)

@) 35
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NAS in Katib

Concepts:

Search Space: Possible architectures to explore
Optimization Objective: maximizing accuracy or minimizing loss

Algorithms:
Efficient Neural Architecture Search (ENAS)
Differentiable Architecture Search (DARTS)

Name darts-cpu

Status as succeeded because max trial count has reached

Best trial

Best trial's params algorithm-settings: {num_epochs": ‘1", 'w_Ir": 0.025, 'w_Ir_min": 0.001, 'w_momentum": 0.9, 'w_weight_decay’: 0.0003, 'w_grad_clip": 5.0, ‘alpha_Ir': 0.0003, ‘alpha_weight_decay": 0.001, 'batch_size": 128, 'num_workers" 4, 'init_channels" ‘1", 'print_step": 50, 'num_nodes": '1', 'stem_multiplier’: ‘1’} search-space: [max_pooling_3x37 num-layers: 1

Best trial performance Best-Genotype: Genotype(normal=[[(max_pooling_3x3'1),(max_pooling_3x3',0)]L.normal_concat=range(2,3),reduce=[|,reduce_concat=range(2,3))

@) 36
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Tensorboards T & miconch

TensorBoard SCALARS GRAPHS  DISTRIBUTIONS  HISTOGRAMS
Measurements and visualizations for ML workloads i S e i e
b4 Ignore outliers in chart scaling
TraCk Ioss and accuracy Tooltip sorting method: default v Sk e
Visualize model graph epoen sy
. . Smoothing
View custom metrics
Kubeflow allows creation of Tensorboard servers ’“
Monitor model training real-time
Training from any Kubeflow component W -
O train
QO validation epoch_loss

epoch_loss

Ntensorboard_logs/ tag: epoch_loss




Model Serving

Deploy a server to run inference via http requests
curl -v -H “Host: host” “http.//host_ip/v1/models/mnist.predict” -d @./input.json

Serverless architecture
Automatic scaling per number of requests
Provided via KServe component

Supports major ML frameworks: TensorFlow, PyTorch, SKLearn, ONNX, Triton, etc.

Enables multi-model serving in the same service
|deal for use cases requiring access to various models simultaneously

[
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Model Serving

V4

API request
m g load N
d Balancer | ’

Model output

\\ ‘ Pod




Model Autoscaling

Why Autoscaling?

Efficient resource usage
Automatically scales based on traffic

Easy to Configure :

Add resource limits in YAML: PO 0®

Limits:

cpu: "250m"
memory: "2Gi1"

nvidia.com/gpu: 1




Conclusions

e  Kubeflow Streamlines the Entire ML Lifecycle
o  From prototyping in notebooks to deploying models as scalable APIs, Kubeflow simplifies and integrates
every stage of the machine learning process.

e Pipelines Enable Reproducible and Automated Workflows
o By defining ML tasks as pipelines, workflows are reproducible, automated, and easy to manage.

e Distributed Training Unlocks Scalability
o  Kubeflow's support for distributed training with PyTorch and TensorFlow training large models efficiently
by leveraging multiple nodes and GPUs.

e Katib Automates Hyperparameter and Architecture Optimization
o  Katib reduces the manual effort of tuning models by automating hyperparameter search and neural
architecture design, leading to better-performing models.

e Serving Provides Scalable and Efficient Model Deployment
o Models are deployed as REST APIs with built-in support for autoscaling, multi-model serving, and GPU
acceleration, ensuring reliable and fast inference.




Where to find us

e https://ml.docs.cern.ch/
e https://ml.cern.ch/

e Mattermost



https://ml.docs.cern.ch/
https://ml.cern.ch/
https://mattermost.web.cern.ch/it-dep/channels/ml

Thank Youl!




Demo Time




Demo Materials

e MNIST-End-to-End Pipeline

e Pytorchjob - Distributed

e Flower - InferenceService



https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/blob/master/pipelines/mnist/mnist-e2e.ipynb?ref_type=heads
https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/blob/master/training/pytorchjob/mnist/pytorchjob-cpu.yaml?ref_type=heads
https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/tree/master/serving/single-model?ref_type=heads

