
Services for Machine Learning
applications (part 3 of 3)
Raulian-Ionut Chiorescu IT-CD-PI

1

Kubeflow Components and Features

2

Notebooks

Machine Learning Pipelines

AutoML - Hyperparameter Optimization

Distributed Training

Tensorboards

Model Serving

3

Kubeflow Notebooks

Features:

● Fully customizable environments
● Select resources (CPU,MEM,GPU)
● Selectable GPU flavors
● Integrated EOS storage

Use Cases:

● Quick prototyping
● Exploratory data analysis
● Small Model training

4

Customizing Notebooks

Pre-built Images:

● PyTorch
● TensorFlow
● SciPy

Customization:

● pip install additional packages
● Build custom images for specific needs

5

6

7

8

9

Kubeflow Pipelines

What Are Pipelines?

● Directed acyclic graph (DAG) workflows for ML tasks.
● Flexible dependency management (e.g. parallel training, data streams).

Compared to Notebooks:

● Reproducibility.
● Parallelism for time efficiency.
● Scalability for large datasets and models.

10

Kubeflow Pipelines

Python script → Compiled to YAML → Submitted for execution.

Concepts:

● Experiments: Group multiple pipeline runs
● Runs: Individual executions of a pipeline
● Pipeline Parameters: Allow dynamic input (e.g., data paths, hyperparameters)

11

Wrapping your Python Script with Pipeline Components

12

Wrapping your Python Script with Pipeline Components

13

Wrapping your Python Script with Pipeline Components

14

Defining Your Kubeflow Pipeline

15

Compiling your Python Script into YAML

16

Running your Pipeline

17

Running your Pipeline

18

Running your Pipeline

19

Recurring Pipelines

Automate repetitive tasks:

● Daily model training
● Weekly data refreshes

Triggering Options:

Set intervals, start/end times, or use cron syntax

20

21

Model Training

Two Approaches to Model Training:

● Classical (Single-Node) Training
● Distributed Training

Why the Distinction Matters:

Classical: Simpler, but limited by single machine resources
Distributed: Scales across multiple nodes for large datasets and models

22

Classical Training

Overview:

● Training runs on a single node
● Suitable for smaller datasets and models

Limitations:

● Memory and computation constrained by a single machine
● Slower for large models or datasets

23

24

25

26

How can we make this better?

27

Distributed Training

Training jobs run across multiple CPUs/GPUs, either on the same machine or across a cluster

Speeds up training and allows handling of larger datasets/models

● Data Parallelism:
○ Data split across workers
○ Each worker trains on a different subset of the data

● Model Parallelism:
○ Model split across workers
○ Useful for very large models

28

Distributed Training

Major ML frameworks support distributed training

Training jobs split across multiple local GPUs

Kubeflow offers distributed training in Kubernetes

TFJob, PytorchJob, MXNetJob, MPIJob, XGBoostJob

Jobs split across multiple cluster GPUs

29

30

Classical vs Distributed Training

When to Use Which?

Classical: Prototyping, small models/datasets
Distributed: Large-scale models, big datasets, or time-sensitive tasks

31

Feature Classical Training Distributed Training

Resources Limited to the resources of
a single node

Scales across multiple
nodes

Scalability Limited High

Dataset Size Small/Moderate Large

Training Speed Slower Faster

Complexity Simple Requires orchestration

Katib: Hyperparameter Optimization

Parameters that define model structure and training process:

● Learning rate
● Number of layers/nodes
● Activation functions
● They are not learned during training but must be optimized

Why is HPO Important?

● Improves model accuracy and performance
● Reduces training time by finding optimal values efficiently

32

Katib: Hyperparameter Optimization

Katib is Kubeflow's automated machine learning (AutoML) tool.

Hyperparameter Tuning (HPO)
Neural Architecture Search (NAS)
Early Stopping for experiments

Standardized development process

Create a training script

Build a Docker image

Run with various sets of inputs

Improved hardware efficiency

Run each trial on a separate GPU

Visualization of results and metrics

33

Katib Hyperparameter Optimization

Algorithms

Random Search
Bayesian Optimization
Tree of Parzen Estimators
Hyperband
.. and more

34

Neural Architecture Search (NAS)

Automates the design of neural network architectures.

Optimizes:

● Number of layers
● Types of operations (e.g., convolutions, pooling)
● Connections between layers

Why Use NAS?

Manual architecture design is time-consuming
NAS helps discover architectures that balance performance and resource efficiency (e.g.

accuracy, inference time)

35

NAS in Katib

Concepts:

Search Space: Possible architectures to explore
Optimization Objective: maximizing accuracy or minimizing loss

Algorithms:
 Efficient Neural Architecture Search (ENAS)
 Differentiable Architecture Search (DARTS)

36

Tensorboards

Measurements and visualizations for ML workloads
Track loss and accuracy
Visualize model graph
View custom metrics

Kubeflow allows creation of Tensorboard servers
Monitor model training real-time
Training from any Kubeflow component

37

Model Serving

Deploy a server to run inference via http requests
curl -v -H “Host: host” “http://host_ip/v1/models/mnist:predict" -d @./input.json

Serverless architecture
Automatic scaling per number of requests

Provided via KServe component

Supports major ML frameworks: TensorFlow, PyTorch, SKLearn, ONNX, Triton, etc.

Enables multi-model serving in the same service
Ideal for use cases requiring access to various models simultaneously

38

Model Serving

39

Model Autoscaling

Why Autoscaling?

Efficient resource usage
Automatically scales based on traffic

Easy to Configure :

Add resource limits in YAML:

40

Conclusions

● Kubeflow Streamlines the Entire ML Lifecycle
○ From prototyping in notebooks to deploying models as scalable APIs, Kubeflow simplifies and integrates

every stage of the machine learning process.

● Pipelines Enable Reproducible and Automated Workflows
○ By defining ML tasks as pipelines, workflows are reproducible, automated, and easy to manage.

● Distributed Training Unlocks Scalability
○ Kubeflow’s support for distributed training with PyTorch and TensorFlow training large models efficiently

by leveraging multiple nodes and GPUs.

● Katib Automates Hyperparameter and Architecture Optimization
○ Katib reduces the manual effort of tuning models by automating hyperparameter search and neural

architecture design, leading to better-performing models.

● Serving Provides Scalable and Efficient Model Deployment
○ Models are deployed as REST APIs with built-in support for autoscaling, multi-model serving, and GPU

acceleration, ensuring reliable and fast inference.

41

Where to find us

● https://ml.docs.cern.ch/
● https://ml.cern.ch/
● Mattermost

42

https://ml.docs.cern.ch/
https://ml.cern.ch/
https://mattermost.web.cern.ch/it-dep/channels/ml

Thank You!

43

Demo Time

44

Demo Materials

● MNIST-End-to-End Pipeline

● PytorchJob - Distributed

● Flower - InferenceService

45

https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/blob/master/pipelines/mnist/mnist-e2e.ipynb?ref_type=heads
https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/blob/master/training/pytorchjob/mnist/pytorchjob-cpu.yaml?ref_type=heads
https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/tree/master/serving/single-model?ref_type=heads

