Services for Machine Learning

applications (part 3 of 3)
Raulian-lonut Chiorescu IT-CD-P|

Kubeflow Components and Features

Notebooks

Machine Learning Pipelines

AutoML - Hyperparameter Optimization
Distributed Training

Tensorboards

Model Serving

-
{7e Kubeflow @ rchiores (owne) +

A Home

]}

Quick shortcuts

+ Upload a pipeline

+ View all pipeline runs

4 Create a new Notebook server

+ View Katib Experiments

Katib

Dashboard Activity

Recent Notebooks

Recent Pipelines

o [Tutorial] DSL - Control structures

a 4,14:35:45

Documentation

Getting Started with Kubeflow

et your machine-learning workflow up and running ¢
Kut

MiniKF

A fast and easy way t oy Kubeflow |

Microk8s for Kubeflow

Quickly get Kubeflow running locally on native hypervisc

5 [Tutorial] Data passing in python

Recent Pipeline Runs

0 pipeline.yaml 2024-10-09 15-04-22

Run of iris_version_at_2024-10-09T14:56:49.802Z (...

Run of iris (28855)

Run of [Tutorial] DSL - Control structures (9f507)

@ 0 o o

end-to-end-pipeline 2024-10-04 11-47-45

d 04/10/2024,

Kubeflow on AWS

unning Kubeflow on Elastic Container

Requirements for Kubeflow

>

Kubeflow Notebooks

Featu res. github-namespace notebook-server1

e Fully customizable environments

° Se|ect resources (CPU MEM GPU) natality-namespace | notebook-server2

e Selectable GPU flavors

° Integrated EOS Storage notebook-server3

mnist-namespace
nb1 Nb2
Use Cases:
Kubeflow deployment
e Quick prototyping
e Exploratory data analysis Kubernetes

e Small Model training

Customizing Notebooks

Pre-built Images:

e PyTorch
e TensorFlow
e SciPy

Customization:

e pip install additional packages
e Build custom images for specific needs

< New notebook

Name

my-awesome-notebook

s
jupyter
N

&

JupyterLab

lopment

code, and data. Ideal for
yping and

expenmentation

Custom Notebook

CPU/RAM @
05

v Advanced Options

1

VisualStudio Code

A lightweight but powerful

source code editor, redefined
and optimized for building and
and

dern web

cloud app

Miremum Memory Gi

1

NVIDIA GPU 10GB

2

RStudio

<« New notebook

Name

my-awesome-notebook

s
jupyter
e’

)

JupyterLab

and data. Idea

yping and

rimentation

Custom Notebook

Custom Image

1

VisualStudio Code

2

RStudio

 Image

registry.cern.ch/kubeflow/my-awesome-notebook-image:v1.0

mage pull policy

IfNotPresent

A Advanced Options

’: File Edit View Run Kemel Git Tabs Settings Help

- © t oo e Tatem x[mmezpm x|+ ..,
[Fitterfites by name Q
- ; Kubeflow -
¢ Name - Last Modified [A] Notebook
_ + [bipyb a month ago
= [testintipynb amonth ago
y: tfjob-gpu.yam! 23 days ago
Y: tiob.yami 23 days ago

Python 3
(ipykernel)

B other

]
1"
=

Terminal

.4
g
E
£
g
i
2

Smpe () 1 M2®

abs Settings

4 Launcher th.ipynb < mnist-e2e.ipynb

o (o £ rehiores [1]

@ notebook.ipynb X

© pame @ + RCHIORES GEL& @ noteboo
- & F Code + Marktown
« [t - wip
= Kfp
te: > config
ey Kfp
y: ti > ipynb_checkpoints kfp He
Ry python Kkfp Dataset
kfp Input
kfp Model
kfp.d Output

Design the Pipeline

tb. S|)
test_tf_model
= bash_history
viminfo i] jat i
get-h
CHANGELO » Pet !
{} inputjson
f LICENSE
m
© notebook.ipynb
mbfile.yam
pipeline.yaml : y
ptjob.yaml : :
ptjobdi : t[Dataset
Pyt L Output [Da
min_max_scaler
1 L)
sklearr ing MinMaxScaler
sklearn.prepro StandardScaler
£
df
labels - df.pop(
standard_scaler
scaler - Standardscaler()
_scaler
MinMaxScaler()
transform(df))
) as f

Simple : § 25 ;

Kemel Git Tabs Settings Help

4 Launcher

RCHIORES

File Edit Code View Plots Session Build Debug Profile Tools

O .0 . ’ - Addns .
Console Terminal - Background Jobs
® R431 -
R version 4.3.1 (2023-06-16) -- "Beagle Scouts"

Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-conda-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()’ on how to cite R or R packages in publications
Type 'demo()’ for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()" to quit R.

X | [tbipynb X | % mnist-e2eipynd X |+

Help

< Environment History Connections Tutorial

- # Import Dataset ~ * 140MB .
R . | {} Global Emvironment .

Environment is empty

Files Plots Packages Help Viewer Presentation
Q NewFoder O NewBlankFile , O Uplbad © Delkete . Rename .;;}Mme -
4 Home

a Name Size

Kubeflow Pipelines

What Are Pipelines?

e Directed acyclic graph (DAG) workflows for ML tasks.
e Flexible dependency management (e.g. parallel training, data streams).

Compared to Notebooks: = ™ e &
e Reproducibility. s
e Parallelism for time efficiency.
o Scalability for large datasets and models. g | —

nnnnn lized_iris_dataset

for-loop-1 &

Kubeflow Pipelines

Python script — Compiled to YAML — Submitted for execution.

Concepts:

e Experiments: Group multiple pipeline runs
e Runs: Individual executions of a pipeline
e Pipeline Parameters: Allow dynamic input (e.g., data paths, hyperparameters)

Wrapping your Python Script with Pipeline Components

000

@dsl.component(packages_to_install=['pandas==1.3.5'])
def create_dataset(iris_dataset: Output[Dataset]):
import pandas as pd

csv_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data’
col_names = [

‘Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'Labels’

df = pd.read_csv(csv_url, names=col_names)

1 £

with open(iris_dataset.path, 'w') as

di.tofcsv(fﬂ

Wrapping your Python Script with Pipeline Components

l=['pandas==1.3.5"', 'scikit-learn==1.0.2'])
d

e Er (
'Exactly one of standard_scaler or min_max_scaler must be True.')

as
-pre 1g

.pre ssing i

1 | t.path) as
.read csv(f)
f.pop('Labels')

.DataFrame(
['Labels'] =
with 1(

1. €0 C

@)

7

Wrapping your Python Script with Pipeline Components

L1=['pandas==1.3.5"', 'scikit-learn==1.0.2'])

IDEY 1,

ection import t
import KNei

.path) as

))
lel.path, 'wb') as
.dump(s 1)

Defining Your Kubeflow Pipeline

o0

@dsl.pipeline(='iris-training-pipeline')
def my_pipeline(

(

.outputs['iris_dataset'],

Compiling your Python Script into YAML

‘__main
fp.compiler as
ler.Compiler().compile(

Pipeline Versions

< New Pipeline
Upload pipeline or pipeline version.

Running your Pipeline

@ Create a new pipeline O Create a new pipeline version under an existing pipeline

Select if the new pipeline will be private or shared.
@ Private O Shared

Upload pipeline with the specified package.

Pipeline Name*

iris-pipeline
Pipeline Description

Choose a pipeline package file from your computer, and give the pipeline a unique name.
You can also drag and drop the file here.

For expected file format, refer to Compile Pipeline Documentation.

File*

® Upload afile pipeline.yaml Choose file

O Import by url

Code Source

m cancel

Pipeline Versions

+ Create run

< New Pipeline

Ru n n | ng you r PI pe | | n e Upload pipeline or pipeline version.

@ Create a new pipeline O Create a n¢

Select if the new pipeline will be private or shared
@® rrivate (O shared : create-dataset

Upload pipeline with the specified package.

Pipeline Name*
iris-pipeline

iris_dataset
Pipeline Description

Choose a pipeline package file from your compute
You can also drag and drop the file here.

For expected file format, refer to Compile Pipeline .
normalize-dataset

File*

® Upload afile pipeline.yaml

(O mport by url U normalized_iris_dataset

Code Source

s B for-loop-1

Pipeline Versions

< New Pipeline

Upload pipeline or pipeline version.

Running your Pipeline

@ Create a new pipeline O Create a n¢

Select if the new pipeline will be private or shared
@ Private O Shared

Upload pipeline with the specified package.

Pipeline Name*
iris-pipeline
Pipeline Description

Choose a pipeline package file from your compute

You can also drag and drop the file here.

For expected file format, refer to Compile Pipeline

File*

® Upload afile pipeline.yaml

O Import by url

Code Source

Run Type
@ One-off O Recurring

E Pipeline Root

Pipeline Root represents an artifact repository, refer to Pipeline Root Documentation.

D Custom Pipeline Root

Run parameters

Specify parameters required by the pipeline

“ : min_max_scaler - boolean
true

neighbors - list

[3,6,9]

normali

standard_scaler - boolean

false

Open Json
Editor

Recurring Pipelines

Automate repetitive tasks:

e Daily model training
o Weekly data refreshes

Triggering Options:

Set intervals, start/end times, or use cron syntax

Run Type
O One-off @ Recurring

Run trigger

Choose a method by which new runs will be triggered
Trigger type*

Periodic

Maximum concurrent runs*

10

D Has start date

[:| Has end date

Catchup 0

Run every

Run Type
O One-off @ Recurring

Run trigger

Choose a method by which new runs will be triggered
Trigger type™

Cron

Maximum concurrent runs*

10

[:] Has start date

D Has end date

Catchup 0

Ri
un every Day -

D Allow editing cron expression. (format is specified here)

Note: Start and end dates/times are handled outside of cron.

Model Training

Two Approaches to Model Training:

e C(lassical (Single-Node) Training
e Distributed Training

Why the Distinction Matters:

Classical: Simpler, but limited by single machine resources
Distributed: Scales across multiple nodes for large datasets and models

Classical Training

Overview:

e Training runs on a single node
e Suitable for smaller datasets and models

Limitations:

e Memory and computation constrained by a single machine
e Slower for large models or datasets

="'sum').item()

sum(). item()

200

FROM registry.cern.ch/kubeflow/kubeflownotebookswg/jupyter-pytorch-cuda-
full:v1.8.0

USER root
V. NB_PREFIX /
RUN apt-get -qq update
DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends
-utils

ENV SHELL /bin/bash

requirements.txt /requirements.txt
pip3 install -r /requirements.txt

COPY mnist.py /

RUN echo "jovyan ALL=(ALL:ALL) NOPASSWD:ALL" > /etc/sudoers.d/jovyan
R /home/jovyan

b OO

apiVersion: "kubeflow.org/v1l"
kind: "PyTorchJob"
metadata:
name: "pytorch-dist-mnist-nccl”
spec:
ytorchReplicaSpecs:
Master:
replicas: 1
restartPolicy: OnFailure
ate:

decar.istio.10/inject: "false"

contalners:
- name: pytorch
image: registry.cern.ch/kubeflow/custom-pytorchjob:v1.0
["--backend", "nccl"]

nvidia.com/gpu: 1

How can we make this better?

Distributed Training

Training jobs run across multiple CPUs/GPUs, either on the same machine or across a cluster
Speeds up training and allows handling of larger datasets/models
e Data Parallelism:

o Data split across workers
o Each worker trains on a different subset of the data

e Model Parallelism:
o Model split across workers
o Useful for very large models

Distributed Training

Major ML frameworks support distributed training

Training jobs split across multiple local GPUs 1
Kubeflow offers distributed training in Kubernetes o "
TFJob, Pytorchjob, MXNetjob, MPljob, XGBoostjob 1
Jobs split across multiple cluster GPUs) n

RRRRRRR

2u

python3

pytorchjob:v1.0

Classical vs Distributed Training

Feature

Resources

Scalability
Dataset Size
Training Speed
Complexity

When to Use Which?

Classical Training

Limited to the resources of
a single node

Limited
Small/Moderate
Slower

Simple

Classical: Prototyping, small models/datasets
Distributed: Large-scale models, big datasets, or time-sensitive tasks

@)

~7

Distributed Training

Scales across multiple
nodes

High
Large
Faster

Requires orchestration

31

Katib: Hyperparameter Optimization

Parameters that define model structure and training process:

Learning rate

Number of layers/nodes

Activation functions

They are not learned during training but must be optimized

Why is HPO Important?

e Improves model accuracy and performance
e Reduces training time by finding optimal values efficiently

Katib: Hyperparameter Optimization

Katib is Kubeflow's automated machine learning (AutoML) tool.

Hyperparameter Tuning (HPO) ..
Neural Architecture Search (NAS) [
Early Stopping for experiments ——— e

Standardized development process
Create a training script
Build a Docker image

Run with various sets of inputs

OVERVIEW TRIALS DETAILS YAML

Improved hardware efficiency _—

Learningrte ~ Batchsize

Run each trial on a separate GPU ™
0 mnist-e2e-8brx44lf 281256 — "

(V] mnist-e2e-flvbsjxq 2.30078 1.63211e2

Visualization of results and metrics

@)

33

Katib Hyperparameter Optimization '
« Create an Experiment

o Metadata
Algorithms

Random Search 6 Trial Thresholds

Bayesian Optimization

Tree of Parzen Estimators @ objective
Hyperband
Bayesian Optimization
..and more o
Covariance Matrix Adaptation: Evolution Strategy
Grid
Hyperband

Multivariate Tree of Parzen Estimators

Population Based Training

Neural Architecture Search (NAS)

Automates the design of neural network architectures.
Optimizes:
e Number of layers

e Types of operations (e.g., convolutions, pooling)
e Connections between layers

Why Use NAS?
Manual architecture design is time-consuming

NAS helps discover architectures that balance performance and resource efficiency (e.g.
accuracy, inference time)

@) 35

~7

NAS in Katib

Concepts:

Search Space: Possible architectures to explore
Optimization Objective: maximizing accuracy or minimizing loss

Algorithms:
Efficient Neural Architecture Search (ENAS)
Differentiable Architecture Search (DARTS)

Name darts-cpu

Status as succeeded because max trial count has reached

Best trial

Best trial's params algorithm-settings: {num_epochs": ‘1", 'w_Ir": 0.025, 'w_Ir_min": 0.001, 'w_momentum": 0.9, 'w_weight_decay’: 0.0003, 'w_grad_clip": 5.0, ‘alpha_Ir': 0.0003, ‘alpha_weight_decay": 0.001, 'batch_size": 128, 'num_workers" 4, 'init_channels" ‘1", 'print_step": 50, 'num_nodes": '1', 'stem_multiplier’: ‘1’} search-space: [max_pooling_3x37 num-layers: 1

Best trial performance Best-Genotype: Genotype(normal=[[(max_pooling_3x3'1),(max_pooling_3x3',0)]L.normal_concat=range(2,3),reduce=[|,reduce_concat=range(2,3))

@) 36

7

Tensorboards T & miconch

TensorBoard SCALARS GRAPHS DISTRIBUTIONS HISTOGRAMS
Measurements and visualizations for ML workloads i S e i e
b4 Ignore outliers in chart scaling
TraCk Ioss and accuracy Tooltip sorting method: default v Sk e
Visualize model graph epoen sy
. . Smoothing
View custom metrics
Kubeflow allows creation of Tensorboard servers ’“
Monitor model training real-time
Training from any Kubeflow component W -
O train
QO validation epoch_loss

epoch_loss

Ntensorboard_logs/ tag: epoch_loss

Model Serving

Deploy a server to run inference via http requests
curl -v -H “Host: host” “http.//host_ip/v1/models/mnist.predict” -d @./input.json

Serverless architecture
Automatic scaling per number of requests
Provided via KServe component

Supports major ML frameworks: TensorFlow, PyTorch, SKLearn, ONNX, Triton, etc.

Enables multi-model serving in the same service
|deal for use cases requiring access to various models simultaneously

[

h

What is this image?
| » LEEEW
file

Car (0.89)

Model Serving

V4

API request
m g load N
d Balancer | ’

Model output

\\ ‘ Pod

Model Autoscaling

Why Autoscaling?

Efficient resource usage
Automatically scales based on traffic

Easy to Configure :

Add resource limits in YAML: PO 0®

Limits:

cpu: "250m"
memory: "2Gi1"

nvidia.com/gpu: 1

Conclusions

e Kubeflow Streamlines the Entire ML Lifecycle
o From prototyping in notebooks to deploying models as scalable APIs, Kubeflow simplifies and integrates
every stage of the machine learning process.

e Pipelines Enable Reproducible and Automated Workflows
o By defining ML tasks as pipelines, workflows are reproducible, automated, and easy to manage.

e Distributed Training Unlocks Scalability
o Kubeflow's support for distributed training with PyTorch and TensorFlow training large models efficiently
by leveraging multiple nodes and GPUs.

e Katib Automates Hyperparameter and Architecture Optimization
o Katib reduces the manual effort of tuning models by automating hyperparameter search and neural
architecture design, leading to better-performing models.

e Serving Provides Scalable and Efficient Model Deployment
o Models are deployed as REST APIs with built-in support for autoscaling, multi-model serving, and GPU
acceleration, ensuring reliable and fast inference.

Where to find us

e https://ml.docs.cern.ch/
e https://ml.cern.ch/

e Mattermost

https://ml.docs.cern.ch/
https://ml.cern.ch/
https://mattermost.web.cern.ch/it-dep/channels/ml

Thank Youl!

Demo Time

Demo Materials

e MNIST-End-to-End Pipeline

e Pytorchjob - Distributed

e Flower - InferenceService

https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/blob/master/pipelines/mnist/mnist-e2e.ipynb?ref_type=heads
https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/blob/master/training/pytorchjob/mnist/pytorchjob-cpu.yaml?ref_type=heads
https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/tree/master/serving/single-model?ref_type=heads

