Services for Machine Learning applications (part 3 of 3) Raulian-Ionut Chiorescu IT-CD-PI

Kubeflow Components and Features

Notebooks

- Machine Learning Pipelines
- AutoML Hyperparameter Optimization
- Distributed Training
- **Tensorboards**
- Model Serving

Kubeflow

B Tensorboards

A Home Notebooks

\circledR rchiores (Owner) \blacktriangledown

\mathbb{H}

Privacy Notice

Manage Contributors

 \sim \sim

Kubeflow Notebooks

Features:

- Fully customizable environments
- Select resources (CPU, MEM, GPU)
- Selectable GPU flavors
- Integrated EOS storage

Use Cases:

- Quick prototyping
- Exploratory data analysis
- Small Model training

Customizing Notebooks

Pre-built Images:

- PyTorch
- TensorFlow
- SciPy

Customization:

- **pip install** additional packages
- Build custom images for specific needs

← New notebook

\leftarrow New notebook

Name my-awesome-notebook

 $\sum_{i=1}^{n}$

Markdown File

亖

Text File

Ĉ

Python File

 $\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$

Show Contextual

Ĉ Python 3
(ipykernel) S_{-} Other

 s_-

Terminal

File Edit View Run Kernel Git Tabs Settings Help Φ 72 Launcher \times **F** tb.ipynb \times **F** mnist-e2e.ipynb \times + \mathbf{E} \pm C ϕ o l (F) \circ \mathbf{m} EXPLORER \Box notebook.ipynb \times Name \vee RCHIORES □ □ ○ □ ■ notebook.ipynb Ò \blacksquare + Code + Markdown ... from kfp.client import Client from kfp import client > .ipynb_checkpoints Y: from kfp import dsl № у: 1) > .ipython > .jupyter from kfp.dsl import Model $>$.keras $>$.kube $>$.local > Kubeflow Design the Pipeline > model > registry_model > tb_test def create_dataset(iris_dataset: Output[Dataset]): > test_tf_model import pandas as pd csv_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' \equiv .viminfo col names = T \equiv .wget-hsts 'Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'Labels' C CHANGELOG.md {} input.json $df = pd.read_csv(csv_url, names=col_name)$ **K** LICENSE ! mpijob.yaml with open(iris_dataset.path, 'w') as f: notebook.ipynb df.to_csv(f) ! ormbfile.yaml ! pipeline.yaml ! ptjobdist.yaml ! pytorchjob.yaml \bullet sa.py ! sa.yaml Screenshot from 2024-07-23 09-46-50.pnq if standard_scaler is min_max_scaler: / sklearn-mem.yaml storage.ipynb 'Exactly one of standard_scaler or min_max_scaler must be True.') import pandas as pd from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler with open(input_iris_dataset.path) as f: $df = pd.read_csv(f)$ $labels = df.pop('labels')$ if standard scaler: scaler = StandardScaler() if min_max_scaler: scaler = MinMaxScaler() df = pd.DataFrame(scaler.fit_transform(df))

 $^{\circ}_{\circ}$

 \blacksquare

且 Se

with open(normalized_iris_dataset.path, 'w') as f: df.to_csv(f)

File Edit View Run Kernel Git Tabs Settings Help

 \bullet

 $\ddot{\bullet}$

i.

Kubeflow Pipelines

What Are Pipelines?

- Directed acyclic graph (DAG) workflows for ML tasks.
- Flexible dependency management (e.g. parallel training, data streams).

Compared to Notebooks:

- Reproducibility.
- Parallelism for time efficiency.
- Scalability for large datasets and models.

Kubeflow Pipelines

Python script \rightarrow Compiled to YAML \rightarrow Submitted for execution.

Concepts:

- Experiments: Group multiple pipeline runs
- Runs: Individual executions of a pipeline
- Pipeline Parameters: Allow dynamic input (e.g., data paths, hyperparameters)

Wrapping your Python Script with Pipeline Components

```
...
(edsl.component(packages_to_install=['pandas==1.3.5'])
def create_dataset(iris_dataset: 0utput[Dataset]):
    import pandas as pd
    csv_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
    col names = I'Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'Labels'
   df = pd.read_csv(csvurl, names=col_name)with open(iris_dataset.path, 'w') as f:
       df.to_csv(f)
```


Wrapping your Python Script with Pipeline Components

```
\bullet\bullet\bullet(ddsl.component(packages to install=['pandas==1.3.5', 'scikit-learn==1.0.2'])
def normalize_dataset(
    input iris dataset: Input[Dataset],
    normalized_iris_dataset: 0utput[Dataset],
    standard scaler: bool,
    min max scaler: bool,
    if standard scaler is min max scaler:
        raise ValueError(
            'Exactly one of standard scaler or min max scaler must be True.')
    import pandas as pd
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.preprocessing import StandardScaler
    with open(input_iris_dataset.path) as f:
        df = pd.read_csv(f)labels = df.pop('Labels')if standard scaler:
        scaler = StandardScaler()
    if min max scaler:
        scalar = MinMaxScalar()df = pd.DataFrame(scaler.fit_transform(df))
    df['Labels'] = \text{labels}with open(normalized_iris_dataset.path, 'w') as f:
        df.to_csv(f)
```


Wrapping your Python Script with Pipeline Components

```
\bullet\bullet\bullet(ddsl.component(packages to install=['pandas==1.3.5', 'scikit-learn==1.0.2'])
def train model(
    normalized iris dataset: Input[Dataset],
    model: Output[Model],
    n_neighbors: int,
    import pickle
    import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.neighbors import KNeighborsClassifier
    with open(normalized iris dataset.path) as f:
        df = pd.read.csv(f)y = df.pop('Labels')X = dfX_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = KNeighborsClassifier(n_neighbors=n_neighbors)
   clf.fit(X train, y train)
    with open(model.path, 'wb') as f:
        pickle.dump(clf, f)
```


Defining Your Kubeflow Pipeline

$\bullet\bullet\bullet$ (ddsl.pipeline(name='iris-training-pipeline') def my_pipeline(standard scaler: bool, min max scaler: bool, neighbors: List[int], $create$ dataset task = create dataset() normalize dataset task = normalize dataset(input iris dataset=create dataset task.outputs['iris dataset'], standard scaler=standard scaler, min_max_scaler=min_max_scaler) with dsl.ParallelFor(neighbors) as n neighbors: train_model(normalized_iris_dataset=normalize_dataset_task .outputs['normalized_iris_dataset'], n neighbors=n neighbors)

Compiling your Python Script into YAML

 $\bullet\bullet\bullet$ if __name__ == $'$ __main__': import kfp.compiler as compiler compiler.Compiler().compile(my_pipeline, __file__ + '.yaml')

\leftarrow New Pipeline

Running your Pipeline

Upload pipeline or pipeline version.

Create a new pipeline ◯ Create a new pipeline version under an existing pipeline

Select if the new pipeline will be private or shared.

Upload pipeline with the specified package.

Pipeline Description

Choose a pipeline package file from your computer, and give the pipeline a unique name. You can also drag and drop the file here.

For expected file format, refer to Compile Pipeline Documentation.

Running your Pipeline

+ Create run

Pipeline Versions Run Type \leftarrow New Pipeline Upload pipeline or pipeline version. Running your Pipeline \odot One-off Recurring Create a new pipeline ◯ Create a ne Select if the new pipeline will be private or shared **E:** Pipeline Root **O** Private ◯ Shared Upload pipeline with the specified package. Pipeline Root represents an artifact repository, refer to Pipeline Root Documentation. Pipeline Name* **Custom Pipeline Root** iris-pipeline m Pipeline Description **Run parameters** Choose a pipeline package file from your compute You can also drag and drop the file here. Specify parameters required by the pipeline For expected file format, refer to Compile Pipeline E min_max_scaler - boolean File* true Upload a file pipeline.yaml neighbors - list **Open Json** $[3,6,9]$ normali Package Url **Editor** \bigcap Import by url standard_scaler - boolean false Code Source **Create Cancel Start Cancel**

Recurring Pipelines

Automate repetitive tasks:

- Daily model training
- Weekly data refreshes

Triggering Options:

Set intervals, start/end times, or use cron syntax

Run Type

 \bigcirc One-off \odot Recurring

Run trigger

Choose a method by which new runs will be triggered

Run Type

 \bigcirc One-off Recurring

Run trigger

Choose a method by which new runs will be triggered

Run every

 1°

Days

 $\overline{\mathbf{v}}$

Model Training

Two Approaches to Model Training:

- Classical (Single-Node) Training
- Distributed Training

Why the Distinction Matters:

Classical: Simpler, but limited by single machine resources Distributed: Scales across multiple nodes for large datasets and models

Classical Training

Overview:

- Training runs on a single node
- Suitable for smaller datasets and models

Limitations:

- Memory and computation constrained by a single machine
- Slower for large models or datasets


```
\bullet\bullet\bulletclass Net(nn.Module):
        super(Net, self).__init__()
        self.comv1 = nn.Conv2d(1, 20, 5, 1)self.comv2 = nn.Conv2d(20, 50, 5, 1)self.fc1 = nn.Linear(4*4*50, 500)self.fc2 = nn.Linear(500, 10)def forward(self, x):x = F.max\_pool2d(x, 2, 2)x = F. relu(self.conv2(x))
        x = x.\text{view}(-1, 4*4*50)return F.log softmax(x, dim=1)def train(args, model, device, train_loader, optimizer, epoch, writer):
    model.train()for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)optimizer.zero grad()
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx \frac{1}{2} args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tloss={:.4f}'.format(
                100. * batch idx / len(train loader), loss.items())
            niter = epoch * len(train loader) + batch idx
            writer.add scalar('loss', loss.item(), niter)
def test(args, model, device, test_loader, writer, epoch):
    test loss = \thetawith torch.no grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)test loss += F.nll loss(output, target, reduction='sum').item() #
sum up batch loss
            pred = output.max(1, keepdim=True)[1] # get the index of the maxlog-probability
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)
   print('\naccuracy={:.4f}\n'.format(float(correct) /
len(test_loader.dataset)))
    writer.add_scalar('accuracy', float(correct) / len(test_loader.dataset),
```


$\bullet\bullet\bullet$

```
FROM registry.cern.ch/kubeflow/kubeflownotebookswg/jupyter-pytorch-cuda-
ful!:v1.8.0
```
USER root

ENV NB_PREFIX /

```
RUN apt-get -qq update
RUN DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends
apt-utils
```
ENV SHELL /bin/bash

```
COPY requirements.txt /requirements.txt
RUN pip3 install -r /requirements.txt
```
COPY mnist.py /

RUN echo "jovyan ALL=(ALL:ALL) NOPASSWD:ALL" > /etc/sudoers.d/jovyan WORKDIR /home/jovyan USER jovyan

$\bullet\bullet\bullet$

```
apiVersion: "kubeflow.org/v1"
kind: "PyTorchJob"
metadata:
  name: "pytorch-dist-mnist-nccl"
spec:
  pytorchReplicaSpecs:
   Master:
      replicas: 1
      restartPolicy: OnFailure
      template:
        metadata:
          annotations:
            sidecar.istio.io/inject: "false"
        spec:
          containers:
            - name: pytorch
              image: registry.cern.ch/kubeflow/custom-pytorchjob:v1.0
              args: ["--backend", "nccl"]
              resources:
                limits:
                  nvidia.com/gpu: 1
```


How can we make this better?

Training jobs run across multiple CPUs/GPUs, either on the same machine or across a cluster

Speeds up training and allows handling of larger datasets/models

- Data Parallelism:
	- Data split across workers
	- Each worker trains on a different subset of the data
- Model Parallelism:
	- Model split across workers
	- Useful for very large models

Distributed Training

Major ML frameworks support **distributed training** Training jobs split across **multiple** local GPUs Kubeflow offers distributed training in Kubernetes TFJob, PytorchJob, MXNetJob, MPIJob, XGBoostJob Jobs split across **multiple** cluster GPUs

$\bullet\bullet\bullet$

```
apiVersion: kubeflow.org/v1
kind: PyTorchJob
metadata:name: "ptjob-dist"
 pytorchReplicaSpecs:
   Master:
     replicas: 1
     restartPolicy: Never
     template:
       spec:containers:
           - name: pytorch
             resources:
               limits:
                 nvidia.com/gpu: 1
             image: registry.cern.ch/kubeflow/custom-pytorchjob:v1.0
             args: ["--backend", "nccl"]
             command:
              - "python3"
              - "/opt/pytorch-mnist/mnist.py"
               - "--epochs=10"
               - "--batch-size=512"
   Worker:
     replicas: 1
     restartPolicy: OnFailure
     template:
       spec:containers:
           - name: pytorch
             resources:
               limits:
                 nvidia.com/gpu: 1
             image: registry.cern.ch/kubeflow/custom-pytorchjob:v1.0
             args: ["--backend", "nccl"]
             command:
               - "python3"
               - "/opt/pytorch-mnist/mnist.py"
               - "--epochs=10"
               - "--batch-size=512"
```


Classical vs Distributed Training

When to Use Which?

Classical: Prototyping, small models/datasets Distributed: Large-scale models, big datasets, or time-sensitive tasks

Katib: Hyperparameter Optimization

Parameters that define model structure and training process:

- Learning rate
- Number of layers/nodes
- **Activation functions**
- They are not learned during training but must be optimized

Why is HPO Important?

- Improves model **accuracy** and **performance**
- Reduces training time by finding optimal values efficiently

Katib: Hyperparameter Optimization

Katib is Kubeflow's automated machine learning (AutoML) tool.

Katib Hyperparameter Optimization

Algorithms

Random Search Bayesian Optimization Tree of Parzen Estimators Hyperband .. and more

\leftarrow Create an Experiment

Neural Architecture Search (NAS)

Automates the design of neural network architectures.

Optimizes:

- Number of layers
- Types of operations (e.g., convolutions, pooling)
- Connections between layers

Why Use NAS?

Manual architecture design is **time-consuming**

NAS helps discover architectures that **balance performance** and **resource efficiency** (e.g. accuracy, inference time)

NAS in Katib

Concepts:

Search Space: Possible architectures to explore Optimization Objective: maximizing **accuracy** or minimizing **loss**

Algorithms: Efficient Neural Architecture Search (**ENAS**) Differentiable Architecture Search (**DARTS**)

Tensorboards

Measurements and visualizations for ML workloads Track **loss and accuracy** Visualize **model graph** View custom metrics

Kubeflow allows creation of **Tensorboard servers** Monitor model training real-time Training from any Kubeflow component

Deploy a server to **run inference via http requests**

curl -v -H "Host: host" "http://host_ip/v1/models/mnist:predict" -d @./input.json **Serverless architecture**

Automatic scaling per number of requests Provided via **KServe** component

Supports major ML frameworks: TensorFlow, PyTorch, SKLearn, ONNX, Triton, etc.

Enables multi-model serving in the **same service**

Ideal for use cases requiring access to **various models simultaneously**

Model Serving

Model Autoscaling

Why Autoscaling?

Efficient resource usage Automatically scales based on traffic

Easy to Configure :

Add resource limits in YAML:

Conclusions

- Kubeflow Streamlines the Entire ML Lifecycle
	- From prototyping in notebooks to deploying models as scalable APIs, Kubeflow simplifies and integrates every stage of the machine learning process.
- Pipelines Enable Reproducible and Automated Workflows
	- By defining ML tasks as pipelines, workflows are reproducible, automated, and easy to manage.
- Distributed Training Unlocks Scalability
	- Kubeflow's support for distributed training with PyTorch and TensorFlow training large models efficiently by leveraging multiple nodes and GPUs.
- Katib Automates Hyperparameter and Architecture Optimization
	- Katib reduces the manual effort of tuning models by automating hyperparameter search and neural architecture design, leading to better-performing models.
- Serving Provides Scalable and Efficient Model Deployment
	- Models are deployed as REST APIs with built-in support for autoscaling, multi-model serving, and GPU acceleration, ensuring reliable and fast inference.

Where to find us

- <https://ml.docs.cern.ch/>
- <https://ml.cern.ch/>
- [Mattermost](https://mattermost.web.cern.ch/it-dep/channels/ml)

Thank You!

Demo Time

Demo Materials

- [MNIST-End-to-End Pipeline](https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/blob/master/pipelines/mnist/mnist-e2e.ipynb?ref_type=heads)
- [PytorchJob Distributed](https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/blob/master/training/pytorchjob/mnist/pytorchjob-cpu.yaml?ref_type=heads)
- [Flower InferenceService](https://gitlab.cern.ch/mlops/platform/kubeflow/kubeflow-examples/-/tree/master/serving/single-model?ref_type=heads)

