

Scattering and Neutrino Detector at the LHC

Silicon Detector Response Simulation

Nayana Bangaru CERN | University of Naples Federico II

Silicon Detector Response Simulation | Nayana Bangaru

Advanced SND Experiment

Emulsions to be replaced with silicon strip sensors for operation during High Luminosity LHC

Silicon Strip Sensor

Fully depleted n bulk with p^+ strips connected to readout electronics

Procedure

Detector Response

- 1. Charge Division
 - Energy fluctuation along particle track

2. Charge Drift and Diffusion

- Calculate drift time of e-h pairs
- Calculate diffusion area of charge on surface

3. Induced Charge

• Integrate charge along strip

Charge Division

- Returns subsegment position
- Returns energy loss in subsegment

dE/dx

dE/dx for ~200 GeV Muons

Electric Field

$$E = \begin{cases} -\frac{qN_A}{\epsilon}x - \frac{qN_A}{\epsilon}x_p, & \text{, for } -x_p \le x < 0\\ \frac{qN_D}{\epsilon}x - \frac{qN_D}{\epsilon}x_n, & \text{, for } 0 \le x < x_n \end{cases}$$

Electric Field

Charge Drift and Diffusion

Calculated fraction of module to drift through

Calculated drift time and spread : $\sigma = \sqrt{2Dt}$

Induced Charge

• Vectorize to strips

 \Rightarrow 3 $\sigma\pm$ Surface Position / Pitch

•
$$n_h = \frac{Eloss}{3.61eV}$$

- Integrate over Gaussian diffusion for each strip
- Normalize with n_h

Induced Charge

References

[1] G. Acampora et al, SND@LHC: the scattering and neutrino detector at the LHC, 2024 JINST 19 P05067

[2] P. Azzurri et al, The CMS Silicon Strip Tracker, J.Phys.Conf.Ser.41 (2006) 127-134

[3] S Meroli et al, Energy loss measurement for charged particles in very thin silicon layers, 2011 JINST 6 P06013

[4] M.Brigida et al. A new Monte Carlo code for full simulation of silicon strip detectors, Nucl. Instrum. Meth. A **533**, 322-343 (2004) doi:10.1016/j.nima.2004.05.127

Backup

Charge Division - Energy Loss Fluctuations

Distribution of energy loss of a particle in a material depends on the significance parameter.

• Significance parameter :

$$\kappa = \frac{\xi}{E_{max}} \tag{1}$$

- $\kappa > 10
 ightarrow$ Gaussian distribution
- $0.01 < \kappa < 10 \rightarrow$ Vailov distribution
- $\kappa < 0.01 \rightarrow$ Landau distribution
- Need to take into account atom binding energies for thin materials (Gauss * Landau)