

Dual Readout in Homogenous Calorimetry

Grace E. Cummings, somewhat on behalf of CalVision/MaxiCC

USFCC Meeting, 15 August 2024

Challenges of Hadron Calorimetry

- quarks hadronize
 - Jets have

Fermilab

- "electromagnetic" (EM) fraction
 - really a charged, relativistic fraction (mostly π^0)
- "hadronic" (had) fraction
 - slower stuff
 - lots of protons and neutrons
- EM to hadronic ratio fluctuates event-to-event
- Detector response to EM energy deposition differs from hadronic energy deposition

Figure adapted from <u>Sehwook Lee 2019 J. Phys.: Conf. Ser. 1162</u> 012043

What is Dual Readout (DR)?

- EM/had ratio can be inferred from ratio of Cerenkov to scintillation light
 - *Event-by-event correction* to account for EM/had deposition fluctuations

2 methods

What is Dual Readout (DR)?

- EM/had ratio can be inferred from ratio of Cerenkov to scintillation light
 - *Event-by-event correction* to account for EM/had deposition fluctuations

2 methods

Why DR in Crystal Electromagnetic Calorimeters?

• Why crystals?

Fermilab

- Homogenous calorimeters
- Scintillating? → more light, better energy
- Good for electromagnetic sections
 - dense
 - large EM/had ratios
- Why use DR technique in crystals?
 - Combine few % EM energy resolution with good hadron energy resolution!
 - precision of a crystal ECAL
 - less hadron energy degradation!

Electromagnetic Calorimeter Examples

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/{ m E}^{1/4}$	1983
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E}\oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16 - 18X_0$	$2.3\%/E^{1/4}\oplus 1.4\%$	1999 🛰
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5 \text{ GeV}$	1998
CsI(Tl) (BES III)	$15X_0$	2.5% for $E_{\gamma} = 1$ GeV	2010
$PbWO_4$ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E}\oplus 0.5\%\oplus 0.2/E$	1997
PbWO ₄ (PWO) (ALICE)	$19X_0$	$3.6\%/\sqrt{E}\oplus 1.2\%$	2008

× /			
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb	$15X_0$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995
spaghetti (KLOE)			
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E}\oplus 0.5\%\oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	$20 - 30X_0$	$12\%/\sqrt{E}\oplus 1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_{0}$	$16\%/\sqrt{E}\oplus 0.3\%\oplus 0.3/E$	1993
Liquid Ar/Pb accordion	$25X_0$	$10\%/\sqrt{E}\oplus 0.4\%\oplus 0.3/E$	1996
(ATLAS)			-

SAMPLING!

https://pdg.lbl.gov/2022/web/viewer.html?file=../reviews/rpp2022-rev-particle-detectors-accel.pdf

Why DR in Crystal Electromagnetic Calorimeters?

• Why crystals?

🛟 Fermilab

- Homogenous calorimeters
- Scintillating? → more light, better energy
- Good for electromagnetic sections
 - dense
 - Iarge EM/had ratios
- Why use DR technique in crystals?
 - Combine few % EM energy resolution with good hadron energy resolution!
 - precision of a crystal ECAL
 - less hadron energy degradation!

N. Akchurin, R. Wigmans, (2012) Nucl. Instr. and Meth. A666 (80)

Previous homogenous DR attempts

- Successfully separated Cherenov and Scintillation light!
 - wavelength 0
 - timing 0

0.3

0.2

0.1

Filter transmission

‡Fermilab

Previous homogenous DR attempts

BGO and PWO matrices

Fermilab

- instrumented w/ PMTs
- targeted UV spectrum
- Not enough light for good resolution
 - scint spectrum killed w/ filters
 - not accepting enough cherenkov

N. Akchurin et al. (2012) Nucl. Instr. and Meth. A 686 (125)

Previous homogenous DR attempts

- BGO and PWO matrices
 - instrumented w/ PMTs
 - targeted UV spectrum
- Not enough light for good resolution
 - scint spectrum killed w/ filters
 - not accepting enough cherenkov

N. Akchurin et al. (2012) Nucl. Instr. and Meth. A 686 (125)

‡ Fermilab

Re-absorbed into crystal!

SiPMs bring new opportunities

🛟 Fermilab

- avoid self-absorption
- In peak of SiPM acceptance
- Goal: ~ 100 Cherenkov photons / GeV

CalVision - homogenous DR for e+e- colliders

Grace E. Cummings | USFCC Meeting, 15 August 2024

‡ Fermilab

CalVision - homogenous DR for e+e- colliders

Fermilab

CalVision - homogenous DR for e+e- colliders

Grace E. Cummings | USFCC Meeting, 15 August 2024

🛟 Fermilab

First two test beams

‡ Fermilab

Test beam at Fermilab, April 24th - 26th

Test beam at Fermilab, May 31st - June 7th

2 test beams with 120 GeV protons @ Fermilab in 2023

Single Crystal Test Module - First Generation

- 4 Hamamatsu S14160-6050HS 6x6 mm SiPMs per end
 - single amplifier stage
 - ~0.6 mV per photon electron
- 2.5 x 2.5 x 6.0 cm crystals

Fermilab

• will not contain a shower

What did we see?

- Collection of MIP and showering events
 - remove events where pulse was truncated
- ~Good signal-to-noise

Fermilab

• Highly position dependent readout

Grace E. Cummings | USFCC Meeting, 15 August 2024

Ž

Hoya U330 notch filter between Crystal and SiPMs on back

Preliminary Performance -BGO

🛟 Fermilab

- Pulse shape analysis to extract # of Cherenkov and Scint
 - take Scintillation shape from unfiltered channels
 - deconvolute with BGO scint function to get Cherenkov
 - Cherenkov shape fit with CR-RC Shaper + RC Differentiator model

Assume single photon electron peak of ~0.6 mV

Discrimination driven by time profile

B. Hirosky CPAD Talk

Preliminary Performance - BGO single pulses

Grace E. Cummings | USFCC Meeting, 15 August 2024

‡ Fermilab

BGO Modeled well in MC ~ 10% level

Fermilab

24

PbF2 results - June Test Beam

- Extensive characterization of Cherenkov acceptance
 - $\circ \quad \ \ \mathsf{PbF2} \to \text{no scintillation}$
 - Close in refractive index
 - angle scans

🛟 Fermilab

• Understand Cherenkov modeling in single crystal

Second Generation Setup

- 4 Broadcom 6x6 mm SiPMs per end
 - 2 amplifier stages
 - high and low gain readout
 - \circ ~0.7 mV per photon electron
- Easier calibration!

Fermilab

April 2024 DESY Testbeam

- 2 GeV Electrons (mostly)
 - functionally continuous beam
- Large variety of materials tested
 - full-length crystals (and more of them)
 - first heavy glasses
 - variety of filters
- Angle Scans

Fermilab

Analysis ongoing!

Summary

Fermilab

- DR is a promising method for improving hadron calorimetry
 - SiPMs enable its pursuit in homogenous calorimeters
- <u>CalVision</u> is exploring DR in homogeneous calorimeters for future colliders
 - DR in crystals
 - Scintillating glasses for homogenous HCALs
 - Detector simulation
 - Algorithms
 - \circ Front end electronics and readout \rightarrow not covered today
- Test beam results are promising!
 - Can separate Cherenkov and Scint through same methods as RD52/DREAM
 - More results are in progress
- Next year: full matrix tests!