

The PANDA Micro-Vertex-Detector

et al.

antiprotons

production (30 GeV p on Cu)

collection and preparation

acceleration and preparation

experiments

antiProton Annihilations at DArmstadt

High Energy Storage Ring

 10^{11} stored antiprotons, momentum range 1.5 to 15 GeV/c

Luminosity at peak intensity: $\mathcal{L} = 2 \cdot 10^{32} \, \text{cm}^{-2} \text{s}^{-1} \, \delta \text{p/p} = 10^{-4}$ (stochastic cooling) interaction rate $2 \cdot 10^7 \, \text{s}^{-1}$

Luminosity for highest resolution: $\mathcal{L}=2\cdot 10^{31}\, cm^{-2}s^{-1}$ $\delta p/p < 4\cdot 10^{-5}$ (electron cooling)

p

PANDA Physics

- Many open questions in strong (non-perturbative) QCD
- charmonium hybrids, glueballs and exotics
- 1.0 perturbative QCD strong QCD

 0 PANDA0.6 PANDA0.7 PANDA0.7 PANDA0.8 PANDA0.9 PANDA0.9 PANDA0.9 PANDA0.1 PANDA0.1 PANDA0.2 PANDA0.3 PANDA0.4 PANDA0.5 PANDA0.6 PANDA0.7 PANDA0.8 PANDA0.9 PANDA0.9 PANDA0.9 PANDA0.1 PANDA0.1 PANDA0.2 PANDA0.3 PANDA0.4 PANDA0.5 PANDA0.6 PANDA0.7 PANDA0.8 PANDA0.9 PANDA
 - open charm
- Chiral symmetry in SU(3) and hadron mass modifications
 - hadrons in the nuclear medium
- Hypernuclei: "3rd dimension" of the chart of nuclides.
- Electromagnetic channels and processes (generalized parton distributions, e-m formfactor of the proton in the time-like regime, virtual Compton scattering, Drell-Yan)

baryon spectroscopy, mixing/CP violation in the charm sector, rare decays, antiproton physics at low energies

antiProton Annihilations at DArmstadt

antiProton ANnihilations at DArmstadt

The PANDA Detector http://http://www

PANDA is a modular multi-purpose device:

- Excellent forward acceptance and resolution
- (Moderate) backward acceptance
- Wide dynamic range: particle momenta 0.1 8 GeV/c
- Momentum measurements in magnetic fields ($\Delta p/p \approx 1\%$)
- Particle ID in wide momentum range e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , p, ...
- Electromagnetic calorimeter: γ , π^0 , η ... (e^{\pm})
- High-resolution vertex detection: D^{\pm} , D^0 / K_s , Λ , Σ , Ω ...
- High interaction rate beyond 2·10⁷ s⁻¹
- Intelligent trigger design for parallel data acquisition at high rates and small branching fractions

hydrogen pellet or cluster jet target **p** beam 10 cm⁸

PANDA Targets

pellet target

10¹⁶ atoms/cm²

20-40 µm diameter mm interspacing

cluster jet target

up to 10¹⁵ atoms/cm²

a few mm long in interaction region

The PANDA MVD

Design adopts state-of-the-art silicon sensor techniques

- Focus on PANDA specific issues:
 - High and asynchronous interaction rate
 - Strongly asymmetric angular distributions
 - Versatile experimental requirements
 - D meson ID (cτβγ ~ 500 μm typical)
 - Minimum mass budget

PANDA Physics MVD

Physics with the MVD

Secondary vertices from delayed decays:

D meson reconstruction

$$D^{0}: c\tau = 123.7 \,\mu\text{m} \frac{(56\pm 5)\% \,\text{K}^{\pm} + anything}{(42\pm 5)\% \,\text{K}^{0} / \overline{\text{K}}^{0} + anything}$$

$$D^{\pm}$$
: $c\tau = 315 \mu m \frac{(30 \pm 4)\% \text{ K}^{\pm} + anything}{(59 \pm 7)\% \text{ K}^{0} / \overline{\text{K}}^{0} + anything}$

(cc̄) also have considerable branching ratios involving KK̄

- Hyperons (e.g. (excited) Ω 's) and kaons (K_S)
- Heavy baryons (e.g. $\Lambda_{\rm c}$)
- Slow charged pions and kaons

The PANDA MVD

Design adopts state-of-the-art silicon sensor techniques

Focus on PANDA specific issues:

- High and asynchronous interaction rate
- Strongly asymmetric angular distributions
- Versatile experimental requirements
- D meson ID (cτβγ ~ 500 μm typical)
- Minimum mass budget

- Heterogeneous design (pixel and strip sensors)
- Very compact design
- Limited number of space points / layers (default 4)
- Novel readout electronics (non-triggered readout)
- Tracklets real-time (fast on-line processing)

Solutions:

The PANDA MVD Project

Silicon pixel sensors

Small pixel cells – 100 x 100 µm²

Specialized custom hybrid ToPix

Features: - .13 µ technology

- ToT to retain (some) energy information

- fast handling for high data rates

- "untriggered" readout of data

- rad hard within "typical" limits

- minimum material load ⇔ sensor technology

100 µm

Silicon strip sensors

Less traversed material than pixels, smaller number of channels

Features: - pitch of 50 – 150 µm

- double-sided sensors, 200 µm thick

- specialized solution for front-end

14

The PANDA MVD Project

Technical detector layout "v1.0"

- all components specified

Simulation of properties and performance

Performance study by simulation:

- rad load

(max. 10^{13} /cm² per $\frac{1}{2}$ a)

- rate load

Simulations

Simulations: component thickness

KTB

Simulation: Number of Track Points

4 barrels:

- 2 inner layers: pixels
- 2 outer layers: strips

6 forward disks:

- 4 pixels
- 2 mixed disks

Pixels:

11M channels, 0.13 m²

Strips:

200k channels, 0.5 m²

Design: Pixels

Pixel module

EPI Sensor Tests

n-epitaxial layers deposited on standard Czochralski (Cz) substrate

09/07/11 KTB 22

Pixel Readout

ToPix 2.0: - Reduced scale prototype.

- Designed in CMOS 0.13 µm technology

128 pixel column: 12.8 mm.

320 pixel cells in four columns:

- → 2 short c's with 32 pixels
 - 2 folded c's with 128 pixels
- Simplified end-of-column logic
- 16 pixels with wire bonding pads

Final ToPix:

- Matrix of 116x110 cells, pixel size 100x100 µm²

- 1.28 cm² active area.

Pixel Readout: Tests

ToPix 2.0:

ToT performance I/O

09/07/11 KTB

Pixel Readout: Tests

ToPix v2: TID and SEU

Irradiation

Single Event Upset

mext prototype with triple redundancy SEU protection

Pixel Readout

Per cell:

- preamplifier
- Leakage compensation
- 5 bit DACs (threshold tuning)
- Comparator
- 12 bit configuration register
- One register for leading edge
- One register for trailing edge

Pixel size	$100 \times 100 \ \mu m^2$
Chip active area	11.4 × 11.6 mm² (116 rows, 110 cols)
dE/dx measurement	ToT, 12 bits dynamic range
Max input charge	50 fC
Noise floor	<32 aC (200 e ⁻)
Clock frequency	155.52 MHz
Time resolution	6.45 ns (1.9 ns r.m.s.)
Power consumption	< 750 mW/cm ²
Max event rate	$6\cdot 10^6$
Total ionizing dose	< 100 kGy

Analog

 $50+50 \mu m$

09/07/11

Design: Strips

Strip sensors

trapezoidal (disk), 70 µm, 15°

rectangular (barrel), 130 µm, 90°

Design: Strips

Strip super-module r/o and cooling

Disk part

Barrel part

Design: Strips

Hybridization: Strip module readout

Disk part

readout along sensor sides

90° bend at top

Barrel part

KTB

Towards PANDA MVD Strips

Hardware

Test Station for sensor tests, readout and electronics development

Towards PANDA MVD Strips

Strip Sensor Tests

- Protons @ COSY (Jülich) .8 GeV/c and 2.95 GeV/c
- Photons and electrons @ ELSA (Bonn) up to 3.2 GeV/c
- Electrons @ DESY (Hamburg) 1 to 5 GeV/c
- Tracking and scattering in station and DuT (sensors, frames)
- Fast cluster recognition (next: track recognition)
- Validation of simulations

Strip Sensor Tests

Beam tests: p at COSY; e at DESY, ELSA

Tracking station

4 09/07/11 KTB

35

Development of a fast readout chain with data manipulation capacity

09/07/11 KTB

Strip Sensor Readout

PANDA readout schematics

- Several frontends on one link depending on occupancy
- EoC reads up to 4 (8)
 FE chains, reduces
 amount of data
 (clustering, priority
 matching) and buffers
- Multiplexed output sends data optically

09/07/11 KTB 36

Strip Sensors

PANDA full-size prototypes (with CIS, Erfurt)

Strip Sensors

Prototype characterization

Strip Sensor Readout Options

PANDA specific requirements:

- self triggering
- precise time resolution
- fully digital hit information
- => not many front-ends available that comply with these requirements

PANDA frontend options:

- adapted ToPix3
- STS-XYTER
- (modified) FSSR2
- channel-wise ADC

09/07/11 **KTB**

Mechanics

Design: Mechanics

Light-carbon support structures

Overall integration concept

■

Tests and prototypes

Mechanics

Detector support

Simulation of end rings and cross frame

asymmetric displacement safety factor of 2 included

Mechanics

Cooling concept

- Coolant: water (18°C)

Under-pressure mode using hydrostatic pressure

Hardware

Low-mass cables

- Al cables on thin dielectric
- -High-bandwidth data transmission
- 1m prototypes under study

total jitter T_i=171ps @ s=1.06Gb/s

1.2 mil Al5.1 mil PA

0.6 mil Al

	Subclass Name	Туре	Material	Thickness (MIL)	Conductivity (mho/cm)	Dielectric Constant	Loss Tangent	Negative Artwork	Shield	Width (MIL)	Impedance (ohm)
1		SURFACE	AIR			4.500000	0				P
2	TOP	CONDUCTOR	ALUMINUM -	1.18	350000	4.500000	0			6.0	68,115
3		DIELECTRIC -	POLYIMIDE_FILM .	5.12	0	3.500000	0				
4	воттом	PLANE *	ALUMINUM -	0,55	350000	4.500000	0		×		
5		SURFACE	AIR			4.500000	0				

	Subclass Name	Туре	Thickness (MIL)	Dielectric Constant	Loss Tangent	Shield	Width (MIL)	Impedance (ohm)	Coupling Type	Spacing (MIL)	DiffZ0 (ohm)
1		SURFACE		4.500000	0						F
2	TOP	CONDUCTOR	1.18	4.500000	0		6.0	66.115	EDGE *	6.0	114.63
3	200000	DIELECTRIC -	5.12	3.500000	0						
4	BOTTOM	PLANE -	0.55	4.500000	0	×		ľ	K	TR I	44
5	,	SURFACE		4.500000	0						

Hardware

The PANDA MVD Project

Physics simulations: Charmonium States

Observation of states above $D\overline{D}$ threshold in $D\overline{D}$!

DD: huge background from less charming channels!

$$\bar{p}p \rightarrow D^+D^-$$

Kaidalov, Volkovitsky, Z. Phys. C 63, 517(1994)

channel	D^+D^-	$D^{*+}D^{*-}$
decay	$D^{\pm} \to K^{\mp} \pi^{\pm} \pi^{\pm}$	$D^{*+} \rightarrow D^0 \pi^+$
	(9.2 %)	(67.7 %)
		$D^0 \to K^-\pi^+$
		(3.8 %)
R	4×10^{-10}	1×10^{-11}

DD: huge background from less charming channels!

$$\bar{p}p \rightarrow D^+D^-$$

$$\bar{p}p \rightarrow D^+D^-$$

reconstructed decay length

reconstructed D mass

channel	D^+D^-	D*+D*-
	number of ev	ents $[\times 10^6]$
DPM	24	-
$3\pi^{+}3\pi^{-}\pi^{0}$	50	40
$3\pi^{+}3\pi^{-}$	10	70
$2K^{\mp}4\pi^{\pm}$	1	10

reaction	cross section [mb]	fraction to $p\overline{p}$	fraction to D^+D^-
$3\pi^{+}3\pi^{-}\pi^{0}$	1.5	$2.5 \cdot 10^{-2}$	$6.25 \cdot 10^{7}$
$3\pi^{+}3\pi^{-}$	0.32	$5.0 \cdot 10^{-3}$	$1.25 \cdot 10^{7}$
$2K^{\mp}4\pi^{\pm}$	0.033	$5.0 \cdot 10^{-4}$	$1.25 \cdot 10^{6}$

 $\epsilon \approx 40\%$ > 5·10⁴ events per PANDA year

selection		efficiency		signal/background		
selection	D^+D^-	$3\pi^{+}3\pi^{-}$	$3\pi^{+}3\pi^{-}\pi^{0}$	$\frac{D^{+}D^{-}}{3\pi^{+}3\pi^{-}}$	$\frac{D^{+}D^{-}}{3\pi^{+}3\pi^{-}\pi^{0}}$	
preselection	0.43	$5.4 \cdot 10^{-3}$	$9.6 \cdot 10^{-4}$	-	-	
4C-fit	0.40	$1.4 \cdot 10^{-6}$	$4.2 \cdot 10^{-7}$	0.02	0.015	
D^{\pm} momentum	0.40	$<1.1\cdot 10^{-8}$	$< 3.6 \cdot 10^{-9}$	> 2.7	> 1.8	
m K~LH>0.3	0.23	$<1.8\cdot 10^{-9}$	$<1.7\cdot 10^{-9}$	> 6.4	> 2.9	

$$p\bar{p} \rightarrow D^{*+}D^{*-}$$

 $\varepsilon \approx 25\%$ > 10³ events per PANDA year

Open Charm

$$\bar{p} + p \rightarrow D_0^* + \bar{D}_0$$

PANDA performance:

- >10% acceptance,
- flat coverage

Summary

The MVD concept

- needs continued R&D.
- has to undergo add'l iterations with simulation.
- has reached a technical level.
- meets the design specifications.

R&D on components ongoing TDR will go public before the end of 2011 Realisation of the PANDA MVD in sight

