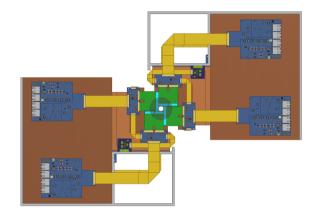
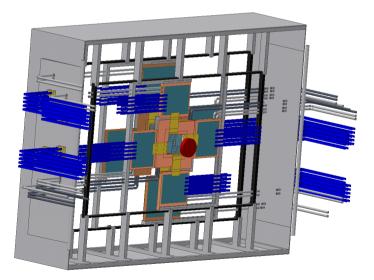


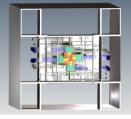
CBM Micro Vertex Detector mechanical integration and cooling

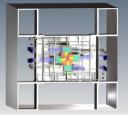

Tobias Tischler for the CBM-MVD Collaboration


08.09.2011, T. Tischler, Workshop on system integration of highly granular and thin vertex detectors, Mont Saint Odile

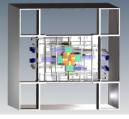


Outline

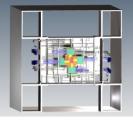

- MVD for CBM
 - Basic requirements
 - detector position
 - "ultra" low material budget
 - vacuum operation
 - operation in magnetic field
- Projects
 - Demonstrator 🗸
 - Prototype Version 1 (MIMOSA-26)
 - Prototype Version 2 (MISTRAL)
 - SIS-100 MVD
- Open questions


MVD for CBM basic requirements

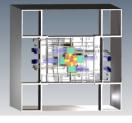
- Detector position
 - inside vacuum chamber
 - compact arrangement
 - hard to access (e.g. for remote positioning)
 - cooling
 - close to the fixed target (5, 10, 15 cm downstream)
 - radiation hardness
 - sensors and materials of the MVD are exposed up to $3\cdot 10^{13} n_{eq}/cm^2$ and 3Mrad per CBM year
 - moveable
 - possibility of moving the MVD stations in and out of the beam area during beam tuning and beam focusing (restoration of precise alignment)
 - detector acceptance
 - active detector area \pm 2.5 ° to \pm 25 °
- Vacuum operation
 - efficient cooling of MAPS (max. 2 W/cm²) to create an uniform temperature distribution over the sensor surface to set the optimum operation parameters
 - concept of conductive cooling
 - use of low mass but high heat conductive materials (active area)
 - use of Cu/Al for heat sinks and support structures (passive area)
 - low out-gassing materials required, e.g. glue EP21TCHT-1 (NASA approved)

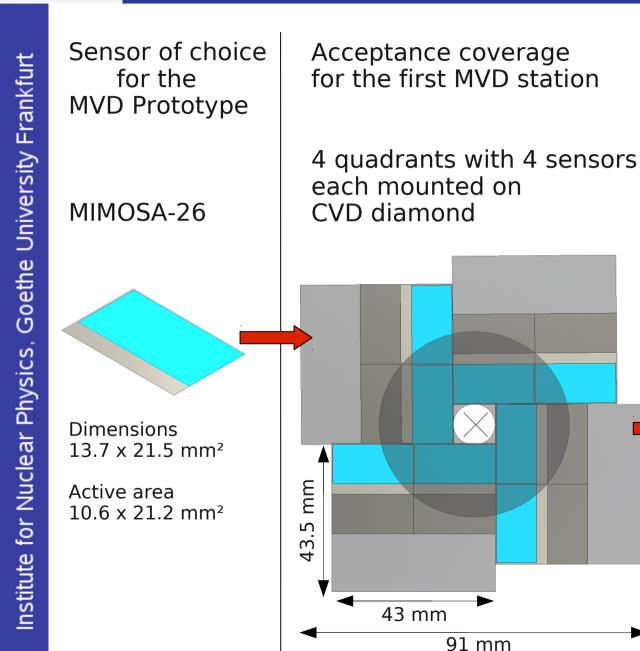

MVD for CBM basic requirements

- "Ultra"-low material budget
 - minimum multiple scattering to allow for precise determination of the secondary decay vertex (open charm reconstruction)
 - $_{-}$ material budget within active detector area is limited to a few $\% X_{0}$
 - use of thinned sensors (50 μm)
 - thin but mechanical stable support structure, which accommodates effective cooling
- Magnetic field
 - impact of Lorentz angle on data quality not studied yet

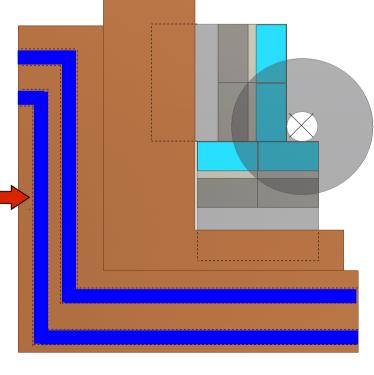

MVD for CBM basic requirements

- Materials
 - combination of low mass but high heat conductive materials calls for the use of high performance materials
 - TPG (Thermal Pyrolytic Graphite)
 - CVD (Chemical Vapor Deposit) diamond


	TPG	CVD diamond		
Heat conductivity [W/mK]	1500	2000		
Radiation length X_0 (cm)	19.03	12.22		
Material surface	graphite	polished		
Price [€/mm ³]	0.03	up to 15		
Thickness [µm]	below 300 difficult	120 – 300 ok		
Project	Demonstrator / back-up	Prototype / SIS-100		

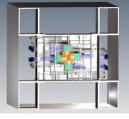


CBM Micro Vertex Detector Prototype



Heat sink (copper) for sensor cooling positioned outside of the acceptance

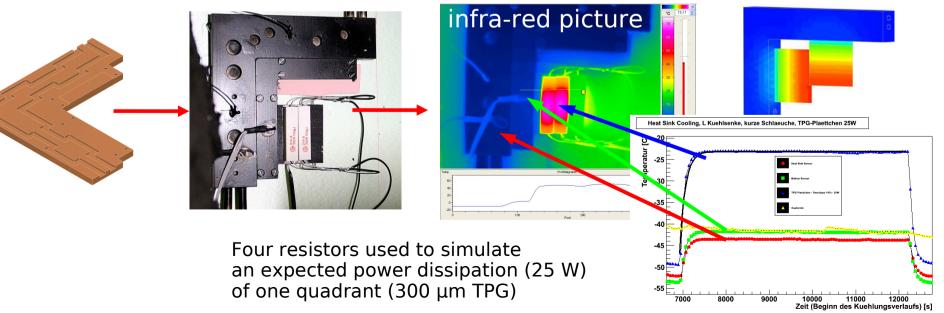
One heat sink is dedicated to cool 2 quadrants



Software used: Autodesk Inventor

mm

91

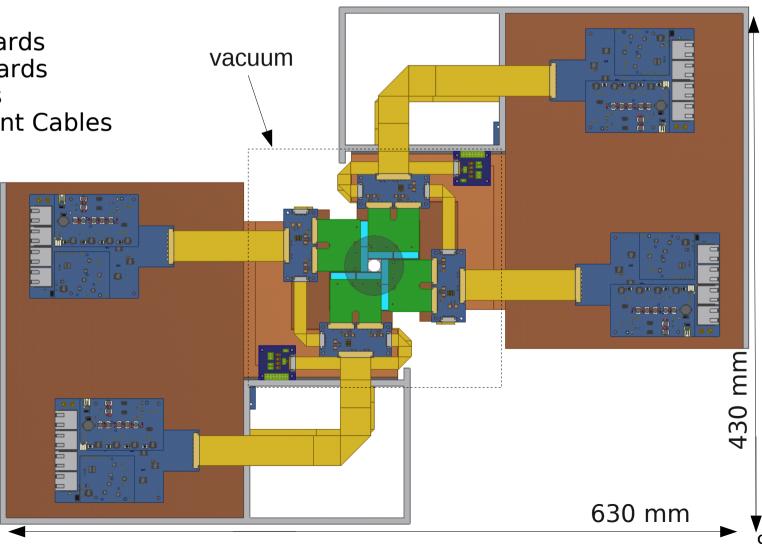

Optimize heat sink geometry in order to minimize

- T_{abs} the absolute operation temperature of the sensors (T_{abs} in the order of 20 °C)
- ΔT the temperature gradient over the sensor surface (ΔT in the order of 10 K)

Include safety margin for the power dissipation of the sensors (max. 2 W/cm²) due to sensor's design and geometry, assumption: maximal power dissipation of 100 W for the first station.

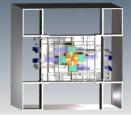
Temperature gradient: difficult, depending on support thickness Absolute temperature: value reached (- 20 °C with – 70°C cooling fluid)

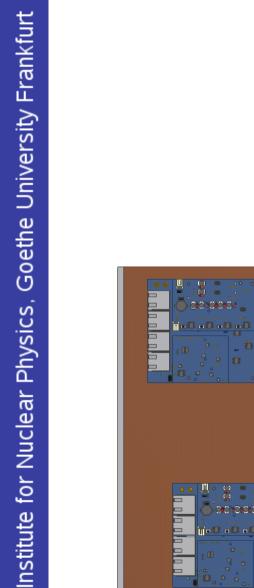
ł

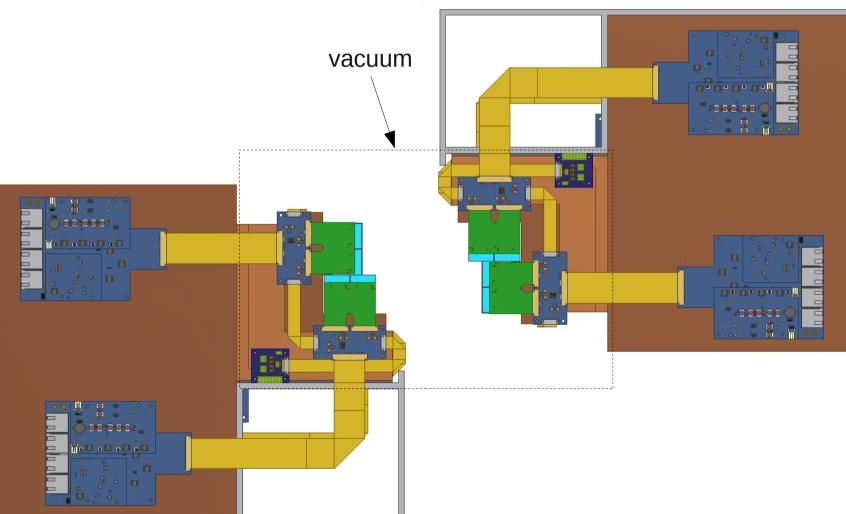

Institute for Nuclear Physics, Goethe University Frankfurt

First MVD Prototype station

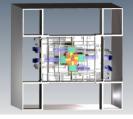
components

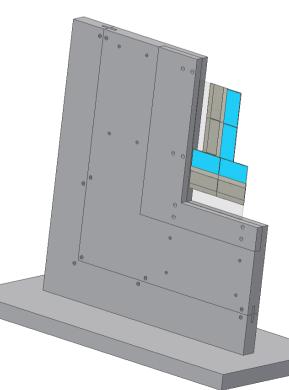

16 MIMOSA-268 Front-End boards8 Converter boards2 Driver boardsseveral Flex-Print Cables


For the electronics see talk of Christoph

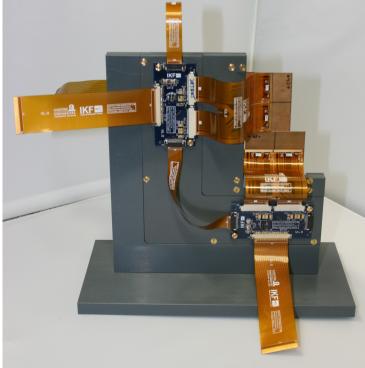


9



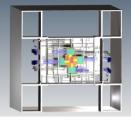


MVD for CBM -Prototype Mock-up

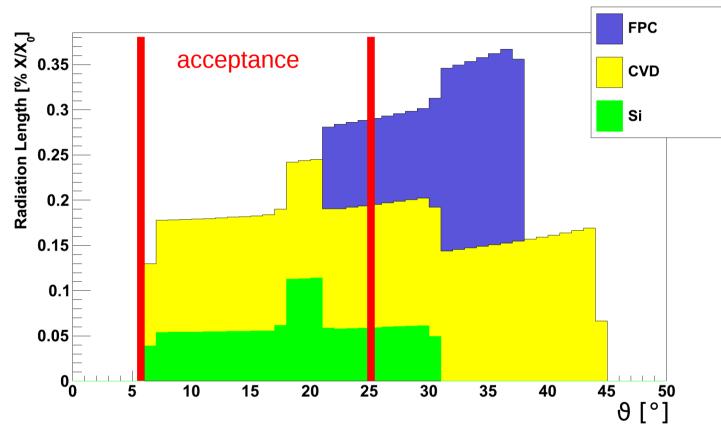


- A 1:1 Mock-up of the MVD Prototype has been build in order to
- test the positioning and arrangement of all parts needed
- test the positioning of the Front-End read-out boards with respect to the sensors
- replace dummy parts with the real detector parts successively

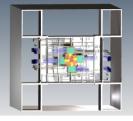
CAD-Model



1:1 Mock-up (with read-out boards)



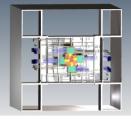
MVD for CBM -**Prototype Simulation**



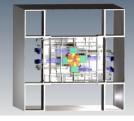
Based on the FairRadLenManager the material budget for the Prototype

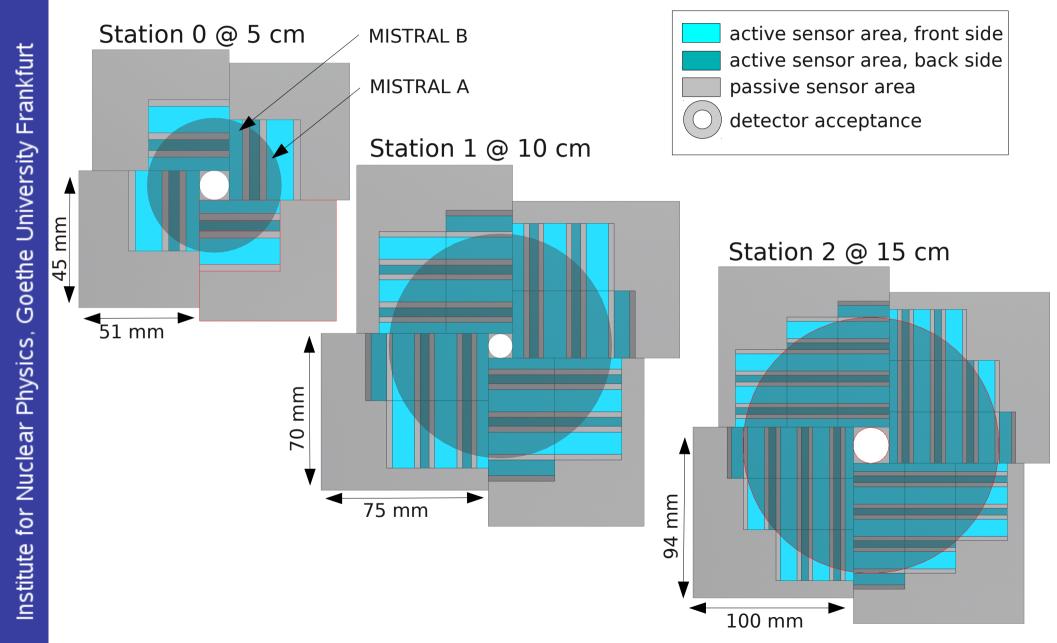
50 µm silicon 150 µm CVD diamond FPC (0.0861 % X_o)

in a φ slice 0 – 2.5° has been simulated (glue and heat sink were not taken into account).

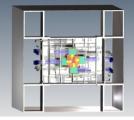


CBM Micro Vertex Detector SIS-100 MVD


MVD for CBM -SIS-100 MVD



Ħ	Sensor of choice	Sensor arrangement for the SIS-100 MVD							
⁻rankfi	for the SIS-100 MVD	 3 stations planned half sensor needed to keep integrated sensor read-out electronics away from the beam sensors are placed on both sides of the CVD diamond to cover the full 							
Goethe University Frankfurt	MISTRAL A								
ie Uni		acceptance with active sensor material							
eth	preliminary dimensions	Station	Position	inner	outer	active	# of	# of	
	full sensor 15 x 30 mm²		[cm]	radius	radius	area	MISTRAL	MISTRAL	
ics,	active area			[mm]	[mm]	[mm ²]	A	В	
Institute for Nuclear Physics,	10 x 30 mm²	0	5	5.5	25	1868	8	4	
ear I	MISTRAL B	1	10	5.5	50	7758	36	8	
Nucl		2	15	10.5	75	17325	68	12	
for									
tute	preliminary dimensions	Sum				26952	112	24	
Insti	half sensor 7.5 x 30 mm ² active area 5 x 30 mm ²	assuming a 50% yield (cutting, thinning,) this asks for minimum 300 sensors 14							
								±7	


MVD for CBM -SIS-100 MVD

MVD for CBM -Simulation implementation

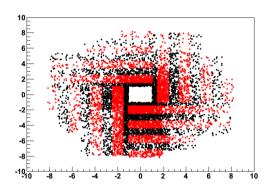
Cu

CVD

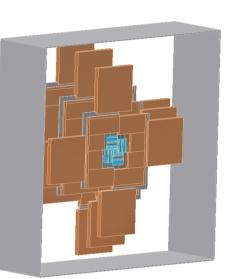
Si

80

9

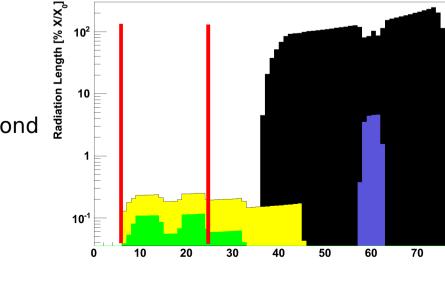

90

Conversion of the actual SIS-100 MVD geometry to CBMRoot was also done.


All active sensor areas are named individually in the way:

MVD-SX-QX-LX-CXX-PX

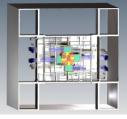
with SXfor station [0,1,2]with QXfor quadrant [0,1,2,3]with LXfor layer [0,1]with CXfor chip [00,01]with PXfor active area [0,1]


acceptance

Based on the FairRadLenManager the material budget for the first Station of the SIS-100 MVD

including

50 μm silicon 150 μm CVD diamond aluminum frame copper heat sinks



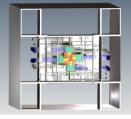
has been simulated.

Institute for Nuclear Physics, Goethe University Frankfurt

MVD for CBM -Conclusion

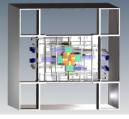
Ongoing studies

for the Prototype:


- Cooling system
 - dimensions of the heat sink
 - configuration of the cooling pumps
 - number of cooling circuits
- Modular design
 - interface between Cu (heat sink) and CVD
 - dimensioning of services (besides cooling: bias, remote positioning,...)

for the SIS-100 MVD:

- Innovative solution
 - thinned sensors packed in polyimide (under study @ IMEC, Belgium and @ CERN)
- MISTRAL A/B properties
 - final form factor(s),...


MVD for CBM -Open questions

- Materials
 - − interplay between materials within the temperature range given (-20 °C \leftrightarrow +20 °C)
 - glue(s)
 - "Mass" production
 - alignment
 - precision of a (pre-)alignment of the
 - half stations
 - sensors
 - methods and techniques to simplify
 - tools and methods
 - "Fineplacer", placing and positioning the sensors individually
 - masks for positioning and gluing more than one sensor at once
 - Vacuum vessel
 - how to provide the services
 - influence of the magnetic field

MVD for CBM -Laboratory

- equipment
 - probe station
 PA 200
 Süss MircoTec
 manual bonding machine
 MEI1204W
 Wagner
 3D microscope
 VHX-600
 KEYENCE
 infra red camera
 VarioCam HR
 InfraTec
 - cooling systems
 cc405/cc815
 huber
- in preparation
 - clean room (equipment (?))
 - class 10000 (ISO 7)
 - further equipment for producing 3 MVD stations & spares