

Probing strangeness hadronisation with event-by-event production of multistrange hadrons with ALICE

Mario Ciacco, on behalf of the ALICE Collaboration

Politecnico and INFN, Turin

Outline

• Introduction

- Enhanced strangeness production in hadronic and heavy-ion collisions
- (Strangeness) hadronisation models
- Defining the observables
 - Event-by-event fluctuations as a probe of hadronisation
 - Cumulants and correlations
- Data analysis
 - Candidate identification
 - Efficiency corrections
- Results from <u>ALICE Collaboration</u>, arxiv:2405.19890
 - Fully-corrected fluctuation observables
 - Comparison with models
- Conclusions and outlook

Hadron production in heavy-ion collisions

- Standard model of heavy-ion collisions
 - The evolution of the system produced in each event occurs through multiple stages
 - \circ Hadronisation \rightarrow recombination of colour degrees-of-freedom into colour singlets
 - Investigated through measurements of hadron production

ALI-PUB-583519

Strangeness enhancement: the origins

Enhancement of strange hadron yields in heavy-ion collisions Initially proposed as a smoking gun of the formation of thermalised strongly-interacting matter¹

- Observation of enhanced production at the SPS in Pb–Pb collisions^{2,3,4}, by STAR at RHIC in Au–Au collisions⁵
- $\circ \quad \langle N_{\text{part}} \rangle \sim \text{centrality} \sim \text{multiplicity}$
- ¹ J. Rafelski and B. Müller, Phys. Rev. Lett. 48, 1066 (1982)
- ³ NA49 Collaboration, Phys.Lett.B 538 (2002) 275-281
- ⁴ NA57 Collaboration, *Phys.Lett.B* 595 (2004) 68-74
- ⁵ STAR Collaboration, Phys.Rev.C 77 (2008) 044908

Strangeness enhancement at the LHC

- Increase of multistrange hadron yields with respect to the pp baseline
- Decrease of the relative enhancement at higher centre-of-mass energy due to the increased relative strangeness production in pp collisions
- What does the small-system
 "baseline" look like?

High-multiplicity pp and p–Pb collisions at the LHC

- (Multi)strange-hadron-to-pion yield ratios as a function of multiplicity
 - Continuous evolution from low-multiplicity pp to central (head-on) Pb–Pb
 - The yields measured in high-multiplicity pp and p–Pb reach the values observed in Pb–Pb
 - Which physical mechanism regulates strange hadron production?

(Strangeness) hadronisation models

- Hadronization \rightarrow non-perturbative many-body problem \rightarrow no *ab-initio* calculations
- Phenomenological models based on different assumptions are used
 - Statistical hadronisation

¹<u>V. Vovchenko and V. Koch, Phys. Rev. C 103, 044903 (2021)</u> ²J. Cleymans et al, Phys. Rev. C 103, 014904 (2021)

Lund string fragmentation

³C. Bierlich et al., arXiv:2203.11601 [hep-ph]
 ⁴Xin-Nian Wang and Miklos Gyulassy, Phys. Rev. D 44, 3501

 \rightarrow Both approaches successfully describe average hadron yields

Statistical hadronisation model

- Statistical-mechanical model of hadronisation
 - Fireball → hadron-resonance gas (HRG) in thermodynamic equilibrium
 - → Reproducing QCD EoS below $T \sim 160$ MeV
 - O Heavy-ion collisions → yields at midrapidity are well described by a grand canonical ensemble
 - Thermal parameters V, T, μ

¹<u>A. Andronic et al., Nature 561 (2018) 7723, 321-330</u>

²ALICE Collaboration, Eur.Phys.J.C 84 (2024) 8, 813

Canonical suppression of strangeness

- Statistical hadronisation in small systems is treated within canonical ensemble
 - Exact conservation of quantum numbers within the canonical volume, $V_c = k dV/dy$
 - \rightarrow Parameter of box approximation implemented by different models^{1, 2}
 - Partial strangeness equilibration can be modelled by saturation parameter¹, $\gamma_s \leq 1$

Canonical statistical hadronisation parameters

ALICE

Thermal-FIST^{1,2}

- The model parameters are extracted by fitting the hadron yields measured at the LHC in pp, p–Pb, and Pb–Pb
- The data are best described by $V_c = 3 \text{ dV/dy}$
- Simple parameterisations vs. multiplicity

¹V.Vovchenko et al., Comput.Phys.Commun. 244 (2019) 295-310

Lund string fragmentation

- Quark-antiquark pair production through the breaking of color string
 - Implemented by event generators such as Pythia 8 and HIJING
 - Simple string fragmentation
 - → flavour suppression regulated by quark masses¹
 - Strangeness and baryon enhancement reproduced adding rope hadronisation² + color reconnection³ + string shoving⁴

¹P. Skands, *Eur.Phys.J.C* 74 (2014) 8, 3024 ²C. Bierlich, *JHEP* 03 (2015) 148 ³J. R. Christiansen et al., *JHEP* 08 (2015) 003

⁴C. Berlich, arxiv:1612.05132 [hep-ph]

mario.ciacco@cern.ch

11

|n| < 0.5

Lund string fragmentation (2)

- Quark-antiquark pair production through the breaking of color string
 - Implemented by event generators such as Pythia 8 and HIJING
 - Simple string fragmentation
 - → flavour suppression regulated by quark masses¹
 - Strangeness and baryon enhancement reproduced adding rope hadronisation² + color reconnection³ + string shoving⁴

¹<u>P. Skands, *Eur.Phys.J.C* 74 (2014) 8, 3024</u> ²<u>C. Bierlich, *JHEP* 03 (2015) 148 ³<u>J. R. Christiansen et al., *JHEP* 08 (2015) 003</u> ⁴C. Berlich, arxiv:1612.05132 [hep-ph]</u>

mario.ciacco@cern.ch

Quantum-number conservation in hadronization models

- Canonical statistical hadronisation
 - Long-range rapidity correlations
 - Like- and unlike-sign correlations induced by quantum number conservation over extended volume

- Lund string fragmentation
 - Short-range rapidity correlations
 - Mostly correlation of unlike-sign quantum numbers due to quark-antiquark pair creation

 \rightarrow Can be probed via event-by-event observables

ALICE

- Hadron yields are measured in a phase-space region limited by detector acceptance
 - Quantum numbers conserved by hadronization fluctuate on an event-by-event basis
 - Experiment → fluctuation of the yields of hadrons carrying conserved quantum numbers

- Hadron yields are measured in a phase-space region limited by detector acceptance
 - Quantum numbers conserved by hadronization fluctuate on an event-by-event basis
 - Experiment → fluctuation of the yields of hadrons carrying conserved quantum numbers
 - Quantified by the cumulants of the hadron multiplicity distribution

Cumulants

 \rightarrow Two species are required to probe same- and opposite-strangeness-sign correlations

Net-**Ξ**- net-kaon correlation

- Same- and opposite-sign correlations \rightarrow 2 different species \rightarrow charged kaons and Ξ
 - Negligible effect of heavy resonance decays
- Observables: cumulant ratios of the net-particles number up to the second order

Cumulants $\kappa_1 = \langle n \rangle$ Mean value $\kappa_2 = \langle (n - \langle n \rangle)^2 \rangle$ (Co)variance $\kappa_{11}(n, m) = \langle (n - \langle n \rangle)(m - \langle m \rangle) \rangle$

Net- Ξ - net-kaon correlation (2)

- Same- and opposite-sign correlations \rightarrow 2 different species \rightarrow charged kaons and \equiv
 - Negligible effect of heavy resonance decays
 Observables: cumulant ratios of the net-particles number up to the second order

$$\kappa_{2}(\overline{\Xi}^{+} - \Xi^{-}) = \kappa_{2}(\overline{\Xi}^{+}) + \kappa_{2}(\Xi^{-}) - 2\kappa_{11}(\overline{\Xi}^{+}, \Xi^{-})$$

$$\kappa_{11}(\Delta\Xi, \Delta K) = \boxed{\kappa_{11}(\overline{\Xi}^{+}, K^{+}) + \kappa_{11}(\Xi^{-}, K^{-})}_{\text{same-sign}} - \boxed{\kappa_{11}(\overline{\Xi}^{+}, K^{-}) - \kappa_{11}(\Xi^{-}, K^{+})}_{\text{opposite-sign}}$$

$$\rho_{\Delta\Xi\Delta K} = \frac{\kappa_{11}(\Delta\Xi, \Delta K)}{\sqrt{\kappa_{2}, \Delta\Xi\kappa_{2}, \Delta K}} \qquad \text{Pearson correlation coefficient}$$

Cumulants

$$\kappa_1 = \langle n \rangle$$
 Mean value
 $\kappa_2 = \langle (n - \langle n \rangle)^2 \rangle$ (Co)variance
 $\kappa_{11}(n, m) = \langle (n - \langle n \rangle)(m - \langle m \rangle) \rangle$

Net-particles $\Delta \Xi = n_{\Xi^+} - n_{\Xi^-}$

$$\Delta \mathbf{K} = \bar{n_{\mathbf{K}^+}} - n_{\mathbf{K}^-}$$

Why net-particle numbers?

- The event-by-event observables are measured in finite multiplicity intervals
 - Multiplicity (volume) fluctuations emerge on top of fluctuations induced by the hadronisation process
- Suppressed in net-particle number fluctuations if antimatter balances matter¹
 - This condition is achieved at the LHC from pp to Pb–Pb collisions^{2,3}

¹<u>P. Braun-Munzinger et al., Nucl. Phys. A 960 (2017) 114-130</u> ²<u>ALICE Collaboration, *Phys.Rev.Lett.* 105 (2010) 072002</u>

mario.ciacco@cern.ch

The ALICE detector in Run 2

Analysis strategy

- Data samples
 - 600M pp, 400M p–Pb, and 300M
 Pb–Pb inelastic events recorded in the LHC Run 2
- Candidate-by-candidate identification

Analysis strategy (2)

- Data samples
 - 600M pp, 400M p–Pb, and 300M
 Pb–Pb inelastic events recorded in the LHC Run 2
- Candidate-by-candidate identification

- Charged kaons $\rightarrow 0.2 < p_T < 1.0 \text{ GeV/c}$
 - Tracked in the detector
 - Particle identification (PID)
 - d*E*/dx in ITS, TPC
 - β with TOF ($p_T > 0.4 \text{ GeV/c}$)

Analysis strategy (3)

- Data samples
 - 600M pp, 400M p–Pb, and 300M
 Pb–Pb inelastic events recorded in the LHC Run 2
- Candidate-by-candidate identification
 - Charged $\Xi \rightarrow 1.0 < p_T < 3.0 \text{ GeV/c}$
 - Reconstructed through cascade decay
 - Boosted decision trees (BDTs), using topological decay variables as input

¹<u>ALICE Collaboration, ALICE-PUBLIC-2023-003</u> ²<u>ALICE Collaboration, *Phys.Rev.Lett.* 133 (2024) 9, 092301</u>

Candidate identification performance

ALICE

- Signal purity \geq 95% across p_{T} and multiplicity
 - The residual impurity has a negligible effect in the measured observables

Efficiency correction

- Raw cumulants are corrected by reconstruction and selection efficiency
 - \circ 5% 30% for kaons
 - \circ 1% 8% for Ξ (including BDT)
- Analytical formulas for corrected cumulants assuming binomial detector response
 - The binomiality is checked through MC simulations
 - Validation of the efficiency correction formulas via MC closure test

Binomial model

$$P_{\rm obs}(n) = \sum_{N} P_{\rm true}(N) B_{\epsilon,N}(n)$$

¹T. Nonaka et al., Phys. Rev. C 95, 064912 (2017)

Efficiency correction

- Raw cumulants are corrected by reconstruction and selection efficiency
 - \circ 5% 30% for kaons
 - \circ 1% 8% for Ξ (including BDT)
- Analytical formulas for corrected cumulants assuming binomial detector response
 - The binomiality is checked through MC simulations
 - Validation of the efficiency correction formulas via MC closure test

Binomial model

$$P_{\rm obs}(n) = \sum_{N} P_{\rm true}(N) B_{\epsilon,N}(n)$$

•
$$\kappa_1 = \langle q_1 \rangle$$

• $\kappa_2 = \langle q_1^2 \rangle - \langle q_1 \rangle^2 + \langle q_1 \rangle - \langle q_2 \rangle$
• $\kappa_1 \langle \Delta, B \rangle = \langle q_1 q_2 \rangle - \langle q_1 \rangle - \langle q_2 \rangle$

•
$$\kappa_{11}(A, B) = \langle q_{1,A} q_{1,B} \rangle - \langle q_{1,A} \rangle \langle q_{1,B} \rangle$$

 $q_{\alpha} = \sum_{i=1}^{M} (N_i / \varepsilon_i^{\alpha})$

 $M = \text{number of } p_{T} \text{ bins}$ $\varepsilon_{i} = \text{efficiency in } i\text{-th } p_{T} \text{ bin}$ $N_{i} = \text{raw counts in } i\text{-th } p_{T} \text{ bin}$

¹<u>T. Nonaka et al., Phys. Rev. C 95, 064912 (2017)</u>

Results: net- Ξ normalised second-order cumulant

- Normalised to uncorrelated baseline
 - Difference of two Poissonian random variables → Skellam distribution
 - A and B Poissonian $\Rightarrow \kappa_2 (A - B) = \kappa_1 (A + B)$

Results: net- Ξ normalised second-order cumulant (2)

- Normalised to uncorrelated baseline
 - Difference of two Poissonian random variables → Skellam distribution
 - A and B Poissonian $\Rightarrow \kappa_2 (A - B) = \kappa_1 (A + B)$
- Deviations from unity in all colliding systems
 - The size is determined by the correlations between unlike-sign quantum numbers

$$\kappa_2(\overline{\Xi}^+ - \Xi^-) = \kappa_2(\overline{\Xi}^+) + \kappa_2(\Xi^-) - 2\kappa_{11}(\overline{\Xi}^+, \Xi^-)$$

Results: net- Ξ normalised second-order cumulant (3)

- Continuous evolution from low-multiplicity pp to central Pb–Pb
 - Common physical mechanism?

Results: net- Ξ normalised second-order cumulant (4)

- Continuous evolution from low-multiplicity pp to central Pb–Pb
 - Common physical mechanism?
- String fragmentation predictions consistently off the data
 - Pythia 8 Monash
 - → No mechanism for strangeness enhancement
 - Pythia 8 QCD CR + Ropes \rightarrow Deviation > 5 σ in pp
- \Rightarrow Milder unlike-sign correlation in data than expected by string fragmentation models, also seen in angular correlations¹

¹ALICE Collaboration, JHEP 09 (2024) 102

Results: net- Ξ normalised second-order cumulant (5)

- Continuous evolution from low-multiplicity pp to central Pb–Pb
 - Common physical mechanism?
- String fragmentation predictions consistently off the data
 - Pythia 8 QCD CR + Ropes \rightarrow Deviation > 5 σ in pp
- The measurements are described by canonical statistical hadronisation
 - $\circ \quad \begin{array}{l} \mbox{Thermal FIST} \rightarrow \mbox{V}_{C} \sim \mbox{3 dV/dy} \\ \mbox{down to pp} \end{array}$

Results: net-K-net- Ξ correlation coefficient

- Decreasing trend with increasing charged-particle multiplicity
 - Interplay between fixed p_{τ} Ο acceptance and evolution of p_{τ} spectrum due to flow-like correlations
- Continuous transitions between different colliding systems
 - Common production mechanism?

Results: net-K-net- Ξ correlation coefficient (2)

- Skellam baseline = 0
- Significant anticorrelation caused by strangeness conservation ($B_{\nu} = 0$)
 - Both like- and unlike-sign Ο correlations

 $\kappa_{11}(\Delta \Xi, \Delta K) = \kappa_{11}(\overline{\Xi}^+, K^+) + \kappa_{11}(\Xi^-, K^-)$

 $-\kappa_{11}(\overline{\Xi}^+,\mathrm{K}^-)-\kappa_{11}(\Xi^-,\mathrm{K}^+)$

Results: net-K-net- Ξ correlation coefficient (3)

- Skellam baseline = 0
- Significant anticorrelation caused by strangeness conservation
- String fragmentation predicts smaller anticorrelation than data
 - Mainly unlike-sign correlation, stronger than the observed one
 - Pythia 8 QCD CR + Ropes Ο \rightarrow Deviation > 5 σ in pp

$$\kappa_{11}(\Delta \Xi, \Delta K) = \frac{\kappa_{11}(\overline{\Xi}^+, K^+) + \kappa_{11}(\Xi^-, K^-)}{-\kappa_{11}(\overline{\Xi}^+, K^-) - \kappa_{11}(\Xi^-, K^+)}$$

Results: net-K–net- Ξ correlation coefficient (4)

- Skellam baseline = 0
- Significant anticorrelation caused by strangeness conservation
- String fragmentation predicts smaller anticorrelation than data
 - Pythia 8 QCD CR + Ropes Ο Deviation > 5σ in pp
- Canonical statistical hadronisation
 - Long-range like- and unlike-sign Ο correlation

$$\kappa_{11}(\Delta \Xi, \Delta \mathbf{K}) = \frac{\kappa_{11}(\overline{\Xi}^+, \mathbf{K}^+) + \kappa_{11}(\Xi^-, \mathbf{K}^-)}{-\kappa_{11}(\overline{\Xi}^+, \mathbf{K}^-) - \kappa_{11}(\Xi^-, \mathbf{K}^+)}$$

Canonical volume parameter

- Combined χ² fit of the event-by-event fluctuation observables in Pb–Pb using Thermal-FIST calculations
 - In pp, canonical volume is constrained by yield measurements
- Variation of k factor in $V_c = k dV/dy$
 - \circ T = 155 MeV, γ_s = 1
- The canonical volume is compatible with 3 dV/dy obtained in small systems from Ξ/π ratio

Comparison with other hadron species

ALICE

- Second-order fluctuations in Pb–Pb are measured by ALICE also for other species
- Net- Λ and net-proton $\rightarrow V_c = 3 \text{ dV/dy}$ matches the measured fluctuations
 - Common volume parameter for different quantum-number content

mario.ciacco@cern.ch

Comparison with other hadron species (2)

ALICE

- Correlation coefficient between antideuteron and net-Λ multiplicities
- Only sensitive to processes underlying nuclear formation
 - Hyperons are not contained inside light-nuclei
- Same volume parameter as other baryons → quantum-number conservation picture coherent across hadron species

Beyond the second order

- Measuring higher-order cumulants in pp, p–Pb, and Pb–Pb
 - Does the continuous evolution with multiplicity hold for all quantum numbers at all orders?
 - Does the statistical hadronisation approach hold beyond 2nd order?

Beyond the second order (2)

- Measuring higher-order cumulants in pp, p–Pb, and Pb–Pb
 - Does the continuous evolution with multiplicity hold for all quantum numbers at all orders?
 - Does the statistical hadronisation approach hold beyond 2nd order?
- STAR data vs. HRG calculations
 - Tension for net-proton at the 4th order in peripheral collisions in Au–Au at 200 GeV
- Is this true also at the at the ultra-TeV scale of the LHC?

<u>S. Gupta et al., Phys.Lett.B 829 (2022) 137021</u>

Beyond the second order (3)

- Net-proton fluctuations measured by STAR in pp at 200 GeV
 - Consistently deviating from Skellam and Pytiha 8 baseline
 - 6th order fluctuations approach negative values \rightarrow lattice QCD baseline (QGP)!
- ALICE can extend this to higher multiplicities with better precision

Summary

- First measurement of event-by-event fluctuations of multistrange baryons from pp to Pb–Pb
- Probing the hadronisation mechanism
 - At present, the data are described only by canonical statistical hadronisation (Thermal-FIST)
 - String-fragmentation based MC generators would require the implementation of longer-range and same-sign correlations to match the data

