

2024/11/05

Evidence for CP violation in $\Lambda_b^0 \rightarrow \Lambda h^+ h^-$ decays at the **LHCb experiment**

Wenbin Qian University of Chinese Academy of Sciences On behalf of the LHCb Collaboration

LHC Seminar, CERN, 2024/11/05

- Introduction
- New CP violation measurements from $\Lambda_b^0 \to \Lambda h^+ h'^-$ decays
- New CP violation measurements from $\Lambda_b^0 \rightarrow ph^-$ decays
- Prospects and conclusion

Matter and antimatter asymmetry

- "Visible" world dominated by matter
- Big-Bang Nucleosynthesis and Cosmic Microwave Background all indicate large matter-antimatter asymmetry in Universe:

$$\eta = \frac{n_B}{n_{\gamma}} \sim 10^{-10}$$

2024/11/05

EW Baryogenesis

PRL 55 (1985) 1039 CKMfitter

2024/11/05

EW Baryogenesis

PRL 55 (1985) 1039 CKMfitter

2024/11/05

CP violation types

CP violation in interference between mixing and decay

CP violation from S- and P-wave interference

We continue to discover new types of CP violation

2024/11/05

2024/11/05

B-mesogenesis

SM CP violation phenomenon may also lead to baryogenesis

Generate matter antimatter asymmetry

2024/11/05

Methods to search for CP violation

Many methods have been explored to search for CP violation in baryon decays

Decay parameters asymmetry

- Important to investigate phase space dependence (amplitude analysis, binned method, energy test etc.)
- CPV: b baryon O(1% − 10%), c baryon O(0.1%), hyperon O(0.001% − 0.01%)
- LHCb: massive production of *b* baryons!

2024/11/05

UCAS, Wenbin Qian

<u>JHEP04(2014)087</u> PRD108(2023)L011101

PRL133 (2024) 101902 Nature Phys.13(2017)391

The LHCb detector (Run 1+2)

2008 JINST 3 S08005

Excellent vertex and IP, decay time resolution: • $\sigma(IP) \approx 20 \ \mu m$ for high- p_T tracks • $\sigma(\tau) \approx 45 \ fs$ for $B_s^0 \rightarrow I/\psi \phi$ and $B_s^0 \rightarrow D_s^- \pi^+$ decays

Very good momentum resolution:

- $\delta p/p \approx 0.5\% 1\%$ for $p \in (0,200)$ GeV
- $\sigma(m_B) \approx 24$ MeV for two-body decays

Hadron and Muon identification

- $\epsilon_{K \to K} \approx 95\%$ for $\epsilon_{\pi \to K} \approx 5\%$ up to 100 GeV
- $\epsilon_{\mu \to \mu} \approx 97\%$ for $\epsilon_{\pi \to \mu} \approx 1 3\%$ Data good for analyses
- > 99%

Designed for CP violation and heavy flavor studies

2024/11/05

The LHCb status

- Run 1:
 - 2011 (7 TeV): 1 fb⁻¹
 - 2012 (8 TeV): 2 fb⁻¹
- Run 2:
 - 2015-2018 (13 TeV): 6 fb⁻¹
- Run 3:
 - 2024 alone (13.6 TeV): 9.56 fb⁻¹
- A new LHCb detector for Run 3 operates at \times 5 higher instantaneous luminosity
- Similar performance, while efficiency for hadron final states increased by a factor of 2

2024/11/05

What we have from LHCb?

	Decays	Data	Methods	Reference	
UPDATE	$\Lambda^0_b o ph^-$	3 fb ⁻¹	A _{CP}	<u>PLB787 (2018) 124</u>	
		1 fb ⁻¹	A _{CP}	<u>JHEP04 (2014) 087</u>	
	$\Lambda^0_b o \Lambda K^+ \pi^-$, $\Lambda K^+ K^-$	3 fb ⁻¹	A _{CP}	<u>JHEP05 (2016) 081</u>	
	$\Xi_b^0 ightarrow p K^- K^-$	5 fb ⁻¹	Amplitude analysis	<u>PRD104 (2021) 052010</u>	
	$\Lambda_b^0 o J/\psi p\pi^-, J/\psi pK^-$	3 fb ⁻¹	A _{CP}	<u>JHEP07 (2014) 103</u>	
	$\Lambda_b^0 o DpK^-$, ADS	9 fb ⁻¹	A _{CP}	PRD104 (2021) 112008	
	$\Lambda^0_b, \Xi^0_b o p3h$	3 fb ⁻¹	A _{CP}	EPJC79 (2019) 745	
	$\Lambda^0_b, \Xi^0_b o p3h$	3 fb ⁻¹	ТРА	<u>Nature Phys. 13 (2017) 391</u> <u>JHEP08 (2018) 039</u>	
	$\Lambda_b^0 o p 3 \pi$	6.6 fb ⁻¹	TPA, energy test	PRD102 (2020) 051101	

Many attempts from LHCb already, we continue to explore the fundamental question

2024/11/05

Studies of $\Lambda_b^0(\Xi_b^0) \rightarrow \Lambda h^+ h'^-$ decays

Branching fraction and *A_{CP}* **measurments**

Charmless three-body *b* **decays**

PRL124 (2020) 031801 PRD101 (2020) 012006

2024/11/05

Branching fraction measurements

$$\frac{\mathcal{B}(\Lambda_b^0/\Xi_b^0\to\Lambda h^+h'^-)}{\mathcal{B}(\Lambda_b^0\to\Lambda_c^+(\to\Lambda\pi^+)\pi^-)} = \frac{N_{\Lambda_b^0/\Xi_b^0\to\Lambda h^+h'^-}}{N_{\Lambda_b^0\to\Lambda_c^+(\to\Lambda\pi^+)\pi^-}} \times \frac{\epsilon_{\Lambda_b^0\to\Lambda_c^+(\to\Lambda\pi^+)\pi^-}}{\epsilon_{\Lambda_b^0\to\Lambda h^+h'^-}} \times \frac{f_{\Lambda_b^0/\Xi_b^0}}{f_{\Lambda_b^0}}$$

- Branching fraction (in addition to A_{CP}) offers important information to the internal dynamics
- In LHCb, we measure w.r.t. control channels (relative branching fraction)
- Control channel $\Lambda_b^0 \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-$ used to reduce systematic uncertainties

in both branching fraction and A_{CP} measurements

2024/11/05

Yields extraction

$$\frac{\mathcal{B}(\Lambda_b^0/\mathcal{Z}_b^0\to\Lambda h^+h'^-)}{\mathcal{B}(\Lambda_b^0\to\Lambda_c^+(\to\Lambda\pi^+)\pi^-)} = \frac{\frac{N_{\Lambda_b^0/\mathcal{Z}_b^0\to\Lambda h^+h'^-}}{N_{\Lambda_b^0\to\Lambda_c^+(\to\Lambda\pi^+)\pi^-}} \times \frac{\epsilon_{\Lambda_b^0\to\Lambda_c^+(\to\Lambda\pi^+)\pi^-}}{\epsilon_{\Lambda_b^0\to\Lambda h^+h'^-}} \times \frac{f_{\Lambda_b^0/\mathcal{Z}_b^0}}{f_{\Lambda_b^0}}$$

- Yields extracted from invariant mass fit:
 - Signal: two Crystal Ball function, tail parameters from simulation
 - Combinatorial background: exponential function
 - Partially reconstructed background: threshold function convolved with resolution
 - Cross-feed background: shape fixed from simulation

Efficiency and fragmentation fraction

$$\frac{\mathcal{B}(\Lambda_b^0/\Xi_b^0\to\Lambda h^+h'^-)}{\mathcal{B}(\Lambda_b^0\to\Lambda_c^+(\to\Lambda\pi^+)\pi^-)} = \frac{N_{\Lambda_b^0/\Xi_b^0\to\Lambda h^+h'^-}}{N_{\Lambda_b^0\to\Lambda_c^+(\to\Lambda\pi^+)\pi^-}} \times \frac{\epsilon_{\Lambda_b^0\to\Lambda_c^+(\to\Lambda\pi^+)\pi^-}}{\epsilon_{\Lambda_b^0\to\Lambda h^+h'^-}} \times \frac{f_{\Lambda_b^0/\Xi_b^0}}{f_{\Lambda_b^0}}$$

- Efficiencies determined from simulation with corrections using data-driven methods
 - Particle ID, trigger, tracking : using control channels from $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$ etc.
 - Dalitz plot corrections: difference on Dalitz plot distribution between data and simulation

• Fragmentation fraction
$$\frac{f_{\Xi_b^0}}{f_{A_b^0}} = \begin{cases} (6.7 \pm 0.5 \pm 0.5 \pm 2.0) \times 10^{-2} @ 7, 8 \text{ TeV} \\ (8.2 \pm 0.7 \pm 0.6 \pm 2.5) \times 10^{-2} @ 13 \text{ TeV} \end{cases}$$

Fragmentation fraction of Ξ_b^- used assuming Isospin symmetry

2024/11/05

Signal channel ($\Lambda_b^0 \rightarrow \Lambda K^+ K^-$)

 $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda h^+ h'^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-)} = \frac{N_{\Lambda_b^0 \to \Lambda h^+ h'^-}}{N_{\Lambda_b^0 \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-}} \times \frac{\epsilon_{\Lambda_b^0 \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-}}{\epsilon_{\Lambda_b^0 \to \Lambda h^+ h'^-}}$

 ΛK^+K^-

Signal yield: $N = 1920 \pm 50$

 $\mathcal{B} = (10.7 \pm 0.3 \pm 0.4 \pm 1.1) \times 10^{-6}$

stat. sys. control channel •

- Predictions rather limited, only for quasi two-body processes;
- Mainly on $\Lambda_b^0 \to \Lambda V$ processes, e.g. $\Lambda_b^0 \to \Lambda \phi$
 - QCDF : 6.3×10^{-6}
 - **GFA**: 1.7×10⁻⁶
 - **PQCD**: 6.9×10^{-6}

arXiv:1803.01297

Optimized using significance F.O.M.

 $N_S/(\sqrt{N_S+N_B})$

- arXiv:1603.06682
- arXiv:2210.15357
- Amplitude analysis needed for precise test

Little on other processes, like
$$\Lambda^0_b o N^{*+}K^-$$

2024/11/05

2024/11/05

Not significant, 1.7 σ

2024/11/05

 $\mathcal{B} = (10.4 \pm 1.4 \pm 1.2 \pm 3.5) \times 10^{-6}$

First observation

4σ , first evidence

2024/11/05

Methodology of A_{CP} measurements at LHCb

Physical quantity of interests

$$A^{f}_{CP} = \frac{\Gamma(\Lambda^{0}_{b} \to f) - \Gamma(\overline{\Lambda}^{0}_{b} \to \overline{f})}{\Gamma(\Lambda^{0}_{b} \to f) + \Gamma(\overline{\Lambda}^{0}_{b} \to \overline{f})}$$

Experimental effects

$$A_{\text{Raw}}^{f} = \frac{N(\Lambda_{b}^{0} \to f) - N(\overline{\Lambda}_{b}^{0} \to \overline{f})}{N(\Lambda_{b}^{0} \to f) + N(\overline{\Lambda}_{b}^{0} \to \overline{f})}$$

What we see directly from mass plots

Preliminary

See later

2024/11/05

Methodology of A_{CP} measurements at LHCb

Physical quantity of interests

$$A^{f}_{CP} = \frac{\Gamma(\Lambda^{0}_{b} \to f) - \Gamma(\overline{\Lambda}^{0}_{b} \to \overline{f})}{\Gamma(\Lambda^{0}_{b} \to f) + \Gamma(\overline{\Lambda}^{0}_{b} \to \overline{f})}$$

$$A_{CP}^{f} = A_{Raw}^{f} - A_{P}^{A_{b}^{0}} - A_{D}^{f}$$
$$A_{P}^{\Lambda_{b}^{0}} = \frac{\sigma(\Lambda_{b}^{0}) - \sigma(\overline{\Lambda}_{b}^{0})}{\sigma(\Lambda_{b}^{0}) + \sigma(\overline{\Lambda}_{b}^{0})} \qquad A_{D}^{f} = \frac{\epsilon(f) - \epsilon(\overline{f})}{\epsilon(f) + \epsilon(\overline{f})}$$

Experimental effects

Production asymmetry

Detection asymmetry

What we see directly from mass plots

Preliminary

See later

2024/11/05

Control channel for *A_{CP}* **measurements**

Signal channel

Control channel

$$A_{CP}^{S} = A_{Raw}^{S} - A_{P}^{A_{b}^{0}} - A_{D}^{S}$$

$$A_{CP}^{C} = A_{Raw}^{C} - A_{P}^{\Lambda_{b}^{0}} - A_{D}^{C}$$

$$\Delta A_{CP} = \Delta A_{Raw} - \Delta A_{P}^{\Lambda_{b}^{0}} - \Delta A_{D}$$

 $A_{\rm P}^{\Lambda_b^0} - \Delta A_{\rm D}$

 $\Delta A_P^{\Lambda_b^0}$: mostly canceled, small residual due to kinematic difference induced by selections

 ΔA_D : mostly canceled, small residual due to kinematic difference induced by selections or particle type difference (K vs π)

$$\Lambda^0_b o \Lambda^+_c (o \Lambda \pi^+) \pi^-$$

 $A_{CP} \sim 0$
Similar topology

2024/11/05

Production asymmetry

- Production asymmetry of $b\overline{b}$, dominated by gg fusion
- Hadronization asymmetry of Λ_b^0 and $\overline{\Lambda}_b^0$ in pp collisions
- A_P : 1~2%, measured by LHCb as a function of y, p_T
- $\Delta A_P \sim 0.2\%$, with uncertainties around 0.2%: consistent with 0
- *A_P*: Only Run 1 measured, Run2 (expected to be smaller) uses
 Run1 measurements

2024/11/05

Detection asymmetry

$$A_{\rm D}^{f} = \frac{\epsilon(f) - \epsilon(\bar{f})}{\epsilon(f) + \epsilon(\bar{f})}$$

- Matter, antimatter interact with detector (made by matter) differently
- f: different combinations of p, K, π etc.
- Including effects from reconstruction of particles, PID, trigger effects; $A_D^h = A_{Rec}^h + A_{Tri}^h + A_{PID}^h, h = K, \pi, p$

 $A_D(\pi^{\pm}) \approx 0.1\%, A_D(K^{\pm}) \approx 1\%, A_D(p/\overline{p}) \approx 1 - 2\%$ Significantly reduced using control channel 2024/11/05 UCAS, Wenbin Qian

CP violation measurements (1)

 $\Lambda_b^0 \to \Lambda K^+ \pi^-$

 $\Delta A_{CP} = -0.118 \pm 0.045 \pm 0.021$

Consistent with 0 within 2.4σ

 $\Lambda_b^0 o \Lambda \pi^+ \pi^-$

 $\Delta A_{CP} = -0.013 \pm 0.053 \pm 0.018$

Consistent with 0

2024/11/05

CP violation measurements (2)

LHCb-PAPER-2024-043

2024/11/05

Dalitz plot distributions

2024/11/05

2024/11/05

UCAS, Wenbin Qian

Looking into Dalitz plot ($\Lambda_{\rm b}^0 \rightarrow \Lambda {\rm K}^+ {\rm K}^-$)

LHCb-PAPER-2024-043

region $\Delta A_{CP}(\Lambda \phi) = 0.150 \pm 0.055 \pm 0.021$

Consistent with 0 within 2.5 σ PRD107 (2023) 053009 Predicted CPV (resonant), ~1.5%

2024/11/05

CP violation in $\Lambda_{\rm b}^0 \rightarrow N^{*+}K^-$

CPC48 (2024) 101002

• Many N^{*+} contributions: N(1520), N(1650), N(1680), N(1710) etc. difficult to untangle

2024/11/05

UCAS, Wenbin Qian

Studies of $\Lambda_b^0 o ph^-$ decays

Analysis strategy

- Golden channel to search for CP violation in baryon decays
- Predictions ranges from few percent to as large as 30%
- Two different strategy taken for Run1 data and Run2 data

$$A_{CP}^{ph} = A_{Raw}^{ph} - A_D^p - A_D^h - A_{PID}^{ph} - A_{Tri}^{ph} - A_P$$

- Production and detection asymmetry all measured by calibration channels
- Used directly to obtain A_{CP}^{ph}

$$A_{CP}^{ph} = \Delta A_{Raw} - \Delta A_D^p - \Delta A_D^h - \Delta A_{PID}$$
$$-\Delta A_P - \Delta A_{Tri} + A_{CP}^{\Lambda_c^+ \pi^-}$$

- $\Lambda_b^0 \to \Lambda_c^+ (\to pK^-\pi^+)\pi^-$ used as control channel to cancel production asymmetry
- ΔA_P = 0 by default by reweighting kinematic

•
$$A_{CP}^{\Lambda_c^+\pi^-}=0$$
 in SM

2024/11/05

Results of *A_{CP}* measurements

- No clear asymmetry observed directly from invariant mass plot
- Run 1 results (updated with much smaller

systematic uncertainties):

 $A_{CP}^{pK^{-}} = (-0.27 \pm 1.55 \pm 0.57)\%,$ $A_{CP}^{p\pi^{-}} = (-0.59 \pm 1.86 \pm 0.53)\%,$

Run 2 results:

$$\begin{split} A^{pK^-}_{C\!P} &= (-1.39 \pm 0.75 \pm 0.41)\%, \\ A^{p\pi^-}_{C\!P} &= (-0.42 \pm 0.93 \pm 0.42)\%, \end{split}$$

• Combined: 9.6% correlation $A_{CP}^{pK^-} = (-1.14 \pm 0.67 \pm 0.36)\%,$ $A_{CP}^{p\pi^-} = (-0.20 \pm 0.83 \pm 0.37)\%,$

2024/11/05

Systematic uncertainties

	Run 1		Run 2		
	$\Lambda_b^0 \to p K^-$	$\Lambda_b^0 \to p \pi^-$	$\Lambda^0_b \! \to p K^-$	$\Lambda_b^0 \to p \pi^-$	_
Fit model	0.05	0.15	0.05	0.15	
Particle identification	0.25	0.25	0.15	0.16	PID uncertainties from calibration,
TIS trigger	0.12	0.11	0.04	0.04	reduced with more data
TOS hardware trigger	0.20	0.21	0.10	0.10	
TOS software trigger	0.33	0.32	0.20	0.20	Estimated with control sample,
Proton detection	0.10	0.10	0.04	0.04	validated with simulation. reduced
Kaon detection	0.25	-	0.10	0.03	with more data
Pion detection	-	0.10	0.04	0.04	
Λ_b^0 production	0.12	0.13	-	-	
Control sample size	-	-	0.28	0.28	Dominant systematic uncertainty,
Total systematic	0.57	0.53	0.41	0.42	reduced with more data
Statistical	1.55	1.86	0.75	0.93	

No crucial systematic uncertainties for future improvements

2024/11/05

Why CP violation in $\Lambda_b^0 \rightarrow ph$ small?

- Sizeable CP violation found in $B^0_{(s)} \rightarrow h^+ h'^-$ decays
- Many theoretical predictions also give large CP violation

Transitions		$m{b} ightarrow m{d} u \overline{u}$		$b ightarrow su\overline{u}$		
Decays	$B^0 o \pi^+\pi^-$	$B_s^0 o \pi^+ K^-$	$\Lambda_{ m b}^0 o p\pi^-$	$B^0 o K^+ \pi^-$	$B_s^0 \to K^+ K^-$	$\Lambda_{\rm b}^0 o p K^-$
Direct CPV (%)	-31.4 ± 3.0	22.4 ± 1.2	0.20 ± 0.91	8.31 ± 0.31	16.2 ± 3.5	-1.14 ± 0.76

Same Feynman diagrams, only spectator quark(s) different

+ Possible additional W-exchange diagram in baryon decays

2024/11/05

Possible explanations

Small strong phase difference?

$$\begin{aligned} A &= a_1 e^{i(\delta_1 + \phi_1)} + a_2 e^{i(\delta_2 + \phi_2)} & \bar{A} &= a_1 e^{i(\delta_1 - \phi_1)} + a_2 e^{i(\delta_2 - \phi_2)} \\ A_{CP} &= \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \propto \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2) & \delta_1 - \delta_2 \sim 0? \end{aligned}$$

Complications in baryon weak decays

Effective reduction on sensitivity

 $r_S = \frac{a_2^S}{a_1^S} \quad r_P = \frac{a_2^P}{a_1^P}$

Can we do more?

- More complicated, but also add more information
- Decay parameters, first proposed by Lee and Yang (1959) to study hyperon decays ۲

$$\alpha_{\mp} = \pm \frac{2\Re(S^*P)}{|S|^2 + |P|^2} = \pm \frac{2|S||P|\cos(\delta \pm \phi)}{|S|^2 + |P|^2}$$
$$\beta_{\mp} = \pm \frac{2\Im(S^*P)}{|S|^2 + |P|^2} = \pm \frac{2|S||P|\sin(\delta \pm \phi)}{|S|^2 + |P|^2}$$
$$\gamma = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2} \qquad \alpha^2 + \beta^2 + \gamma^2 = 1$$

 δ : strong phase difference between S and P waves φ: weak phase difference between S and P waves

$$-\tan(\delta)\tan(\phi) \qquad R_{\beta_1} = \frac{\beta_+ + \beta_-}{\alpha_+ - \alpha_-} = \tan(\phi) \qquad R_{\beta_2} = \frac{\beta_+ - \beta_-}{\alpha_+ - \alpha_-} = -\tan(\delta)$$

New CP observables: •

$$A_{\alpha} = \frac{\alpha_{+} + \alpha_{-}}{\alpha_{+} - \alpha_{-}} = -\tan(\delta)\tan(\phi)$$

2024/11/05

LHCb can contribute

• Several decay chains considered:

$$\Lambda_b^0 \to \Lambda_c^+ (\to pK_S^0)h^-$$
$$\alpha_b \colon \Lambda_b^0 \to \Lambda_c^+ h^- \qquad \alpha_c \colon \Lambda_c^+ \to pK_S^0$$

$$\Lambda_{b}^{0} \to \Lambda_{c}^{+}(\to \Lambda h^{+})h^{-}, \Lambda \to p\pi^{-}$$

$$\frac{d\Phi}{d\Omega} \propto (1 + \alpha_{b}\alpha_{c}\cos\theta_{1} + \alpha_{c}\alpha_{s}\cos\theta_{2} + \alpha_{b}\alpha_{s}\cos\theta_{1}\cos\theta_{2}$$

$$- \alpha_{b}\gamma_{c}\alpha_{s}\sin\theta_{1}\sin\theta_{2}\cos\phi_{2} + \alpha_{b}\beta_{c}\alpha_{s}\sin\theta_{1}\sin\theta_{2}\sin\phi_{2})$$

$$\alpha_{b}: \Lambda_{b}^{0} \to \Lambda_{c}^{+}h^{-}_{\Lambda_{b}^{0} \text{ rest frame}} \qquad \alpha_{c}, \beta_{c}, \gamma_{c}: \Lambda_{c}^{+} \to \Lambda h^{+}_{\Lambda_{c}^{+} \text{ rest frame}}$$

$$\mu_{c} \to \mu_{c}^{+} \Lambda_{c}^{+} \to \Lambda_{c}^$$

2024/11/05

Results of decay parameters

- First determination of α in $\Lambda_b^0 \rightarrow \Lambda_c^+ h^$ decays (precision ~0. 9% for $\Lambda_c^+ \pi^-$)
- Most precise determinations of α , (β, γ) in $\Lambda_c^+ \rightarrow pK_S^0$ (precision ~1.4%) and $\Lambda_c^+ \rightarrow \Lambda h^+$ decays
- Confirmation of $\alpha(\Lambda \rightarrow p\pi^-)$ from BESIII (significantly higher than previous measurements)
- Results consistent with no CP violation in both A_{α} and R_{β_1} (precision ~2% for $\Lambda_c^+ \pi^-$)
- Pave the way for other decay parameter measurements (more sensitive)

2024/11/05

2024/11/05

CP violation in baryon decays in near future

• Hyperon decays: $\Lambda
ightarrow p\pi^-$ (3.2M events from BESIII)

 $\frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+} = -(2.5 \pm 4.8) \times 10^{-3}$

With Super τ -charm factory, sensitivity around 10^{-4} , approaching SM prediction

• Charm decays: $\Lambda_c^+ o p \pi^+ \pi^-$, $p K^+ K^-$ (LHCb, Run1, Λ_c^+ from b decays)

 $A_{CP}(\Lambda_{c}^{+} \rightarrow pK^{+}K^{-}) - A_{CP}(\Lambda_{c}^{+} \rightarrow p\pi^{+}\pi^{-}) = 0.003 \pm 0.011$

• Beauty baryon decays:

With prompt Λ_c^+ and Run3 data, precision less than 10^{-3} , approaching SM predictions

- Further explore channels with more data: $\Lambda_b^0 \to p K_S^0 h^-$ (Run 1), $\Lambda_b^0 \to J/\psi p h^-$ (Run 1), $\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$ (Run 1 A_{CP} , Run 1+2 TPA), $\Lambda_b^0 \to p K^- \pi^+ \pi^-$ (Run 1) and $\Lambda_b^0 \to p \pi^0 h^-$
- Especially $\Lambda_b^0 \to pK^-\pi^+\pi^-$ ($\Lambda_b^0 \to p\pi^0K^-$), which also contains resonant contributions from $\Lambda_b^0 \to N^{*+}(\to p\pi^+\pi^-)K^-$ ($\Lambda_b^0 \to N^{*+}(\to p\pi^0)K^-$)
- Unknown suppression factor (QCD related), luck needed to find where it hides !

2024/11/05

What if we find 5σ CP violation in baryon?

Next question: is it SM?

γ measurements in $\Lambda_{\rm b}^0$ decays

• Measuring angle γ in Λ_b^0 decays help answering

- Angle γ measured in different *b* hadrons
 - B^+ : $(63.4^{+3.2}_{-3.3})^\circ$
 - B^0 : $(64.6^{+6.5}_{-7.5})^\circ$
 - B_s^0 : $(75.0^{+10.0}_{-11.0})^\circ$

A non-zero γ indicates CP violation

- Λ_b^0 : no measurements yet!!!
- Provide additional way to search CP in baryon decays
- LHCb has already made a first step forward

Observation of ADS mode in $\Lambda_{\rm b}^0 \rightarrow DpK$

PRD104 (2021) 112008

A_{CP} measurements in $\Lambda_{\rm b}^0 \rightarrow DpK$

PRD104 (2021) 112008

Extracting γ complicated, more channels/data, better methods needed

2024/11/05

Most important: more data coming

- With our new LHCb detector, already collected more data than Run1+2
- More importantly, full software trigger → better performance on hadronic final states

Conclusion

- CP violation crucial for understanding matter antimatter asymmetry in Universe
- However, CP violation in baryon decays not established yet
- LHCb experiments fully explore its potential on baryon CP violation
- Evidence of baryon CP violation found in $\Lambda_b^0 \to \Lambda K^+ K^-$ decays (full phase space)

and in local resonant region $\Lambda_b^0 \to N^{*+}K^-$

- Precise CP violation measurements also in $\Lambda_b^0 \rightarrow ph^-$ decays, further understanding of the small A_{CP} needed
- Stay tuned for more interesting results on baryon CP violation from LHCb

Thank you for your attention!

- Less resonant dependence binning: adaptive binning approach (efficient when events are huge)
- Due to lack of statistics, no bin has significance more than 3σ

CP violation induced by different components

- New types of CP violation found by the LHCb experiment in $B^+ \rightarrow \pi^+ \pi^- \pi^+$ decays: CP violation through interference between S- and P-waves
- Similarly, also in b-baryon decays, affecting search of CP violation

2024/11/05

CP violation phenomena

