CMS searches for Higgs boson pair production

Alexandra Carvalho On behalf of the CMS collaboration

CERN seminar, 12 November 2024

The Higgs mechanism

- The Standard Model of particle physics is a formidable description of known matter and the three of four elementary forces in Nature
- The Higgs mechanism is the simplest way to unify ElectroWeak interactions,

$$\Phi \equiv \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array} \right) \qquad \begin{array}{c} {\rm SU(2)} \\ {\rm doublet} \end{array}$$

- Spontaneous breaking of the EW symmetry (EWSB) results in the mass properties of the Weak gauge bosons, plus a scalar particle: The Higgs Boson (H)
- Once its mass is known, many things are predicted:
 - Mass of all known matter is generated via the H couplings
 - The shape of the H potential is determined (value of it self coupling) ==> the fate of the vacuum of the universe

Deviations on the H potential disbalance all predictions and would be a clear sign on New Physics

$$V(\Phi^{\dagger}\Phi) = -\mu^2 \Phi^{\dagger}\Phi + \lambda (\Phi^{\dagger}\Phi)^2$$

One mass term, one self coupling

The Higgs Boson

• The Higgs boson was discovered by the ATLAS and CMS experiments at the LHC in 2012 • many studies of Higgs boson properties have been performed, in particular:

mH measured with astonishing precision ATLAS Stat. only Combination HH Tota **Run 1:** \sqrt{s} = 7-8 TeV, 25 fb⁻¹, **Run 2:** \sqrt{s} = 13 TeV, 140 fb⁻¹ Total (Stat. only) **Run 1** $H \rightarrow \gamma \gamma$ 126.02 ± 0.51 (± 0.43) GeV **Run 1** $H \rightarrow 4\ell$ 124.51 ± 0.52 (± 0.52) GeV **Run 2** $H \rightarrow \gamma \gamma$ 125.17 ± 0.14 (± 0.11) GeV **Run 2** $H \rightarrow 4\ell$ 124.99 ± 0.19 (± 0.18) GeV **Run 1+2** $H \rightarrow \gamma \gamma$ 125.22 ± 0.14 (± 0.11) GeV **Run 1+2** $H \rightarrow 4\ell$ 124.94 ± 0.18 (± 0.17) GeV Run 1 Combined 125.38 ± 0.41 (± 0.37) GeV Run 2 Combined 125.10 ± 0.11 (± 0.09) GeV Run 1+2 Combined 125.11 ± 0.11 (± 0.00) GeV ----PRL.131.251802 124 125 123 126 127 128 $m_{\rm H}$ [GeV]

The <u>H width</u> and <u>CP properties</u> are well measured

What is missing? The H potential !!!

The Higgs Boson

• The Higgs boson was discovered by the ATLAS and CMS experiments at the LHC in 2012 • many studies of Higgs boson properties have been performed, in particular:

Higgs pairs in the Standard Model

The search for non-resonant H boson pair production is the only direct method to probe λ at LHC

Main production mechanisms at the LHC are gluon fusion (ggF) and vector boson fusion (VBF)

Test deviation from the SM couplings with K-framework: $K_X = X / X_{SM}$

Higgs pairs in the SM: gluon fusion production

ggF: loop induced processes, destructive interference

6

Deviations of κλ from the SM prediction ==> softer signal

The theory saga on ggF signal modelling

- ggF H pair production is an one loop process, making its simulation challenging
 - First modelled using form factors to emulate the loop [2014]
 - Full model at QCD NLO precisions to SM-like processes [2016]
 - Including BSM-like processes in HEFT [2020], and SMEFT [2022]
- Total cross-section computation had evolved considerably in the last years

We use N3LO with top mass effects, That got sligtly updated since last comb.

10.0

 κ_λ

Higgs pairs in the SM: Vector Boson fusion production

VBF: tree-level process $\mathbf{O}\mathbf{V}\mathbf{BF}(\mathbf{S}\mathbf{M}) = \mathbf{I}.\mathbf{7} \mathbf{f}\mathbf{b}$

K_{2V} is also probed with V-associated production of H pairs (VHH)

structure of the H field !

What if there is more than the SM interactions

New symmetries and/or new (super) heavy particles induces additional effective terms into the H potential • specially on ggF production (BSM-like couplings)

9

- We assumed these in the Higgs EFT (HEFT) scenario => linear variation of couplings
 - Althernative approach, Standard Model EFT (SMEFT) the Symmetries existend on the SM are assumed to govern the new interactions, introducing correlations between couplings
- - - also, event topologies can be modified by interference terms

More violent variations in signal topology and cross section variations

• New physics influencing H pairs production can also manifest itself on the existence of resonances decaying to H pairs, accessible by the LHC (for a review of CMS results see <u>arXiv:2405.17605</u>, acc. by Physics Reports) • If the new particles are additional H bosons, the couplings of the 125 GeV are changed by mixing,

What if there is more than the SM interactions

New symmetries and/or new (super) heavy particles induce additional effective terms into the H potential • Especially in ggF production (BSM-like couplings)

10

- => linear variation of couplings

11

The CMS saga towards the H potential

The CMS saga towards the H potential

• Higgs boson decays:

- Decays to photons, hadronic taus and b-jets are fully reconstructable
- Leptonic decays of W and tau leptons also involve a neutrino and therefore loss of information
 - To recover, Multivariate Analysis (MVA) is imperative

Balance between resolution, reconstructebility and branching ratio define each channel importance

How to look for Higgs bosons?

- At CMS we can identify as objects:
 - Photons, electrons and muons are clean (low BKG) signatures
 - Jets (b-jets) and hadronic tau leptons hold big portion of branching ratio (BR)

bb 58.1%

• We have a rich coverage of Higgs pairs final states and production modes

• There is no time to cover all channels, for an overview, I will talk about main channels and the brand new additions

Input channels for CMS legacy HH combination

PAS-HIG-20-011

al state	Reference		
γγ ★●	<u>JHEP 03 (2021) 257</u>]◀–	
ст ★ ●	<u>PL B 842.137531</u>	-	Include
ob (resolved) 🖈 🔍	<u>PRL. 129.081802</u>	-	HEFT ar
ob (boosted) 🛧 🖲	PRL. 131.041803	-	shape-B
Itilepton 🗡 🔴	JHEP 07 (2023) 095	-	•
ZZ (4 <i>ℓ</i>) 🖈	JHEP 06 (2023) 130		
ob (VHH)	CMS-PAS-HIG-22-006		l'Iost add
NW (leptonic) ★ 🗨	JHEP 07 (2024) 293	 ←	especial
NW (hadronic) ★ 🔵	<u>CMS-PAS-HIG-23-012</u>		for this
	CMS-PAS-HIG-22-012		publicatio
Wγγ 🛧	CMS-PAS-HIG-21-014	┫	

Nature PRD 94 (2016) 5, 052012 **PAS-HIG-20-011**

Four resolved jets PRL 129.081802

- b-jet identification with deep NN [ref.]
- Fully data-driven background estimation
 - Jets are paired to reconstruct both H
 - Control regions defined by events out of the 2D H mass region extrapolate the BKG on the signal region CMS 36 fb⁻¹ (13 TeV)
- Simultaneous fit of:
 - MVA for ggF
 - mHH for VBF

 $400 \vdash HH \rightarrow b\overline{b}b\overline{b}$ 2016 Data ggF high-m Bkg. model $350 \vdash A_{SB}^{4b}$ region Bkg. unc. — SM ggF-HH x 100 300 VBF-HH (κ_{2V}=2) x 100 250 200 150 100 50 ta/Bkg **3.9 (7.8) times the SM** BDT Output

When combining both results overlap is removed with priority to keep events in the boosted region The V-associated production is probed in <u>CMS-PAS-HIG-22-006</u>

4b final state

Largest Br = 34% X Large QCD bkg

Fully boosted PRL 131.041803

- Select events with energetic two large-cone jets
- ID with GraphNN-based jet flavour [ref.] ==> Considerable BKG reduction

Specially good constraining anomalous K2V and C2!

BR ~ 0.3%

16

JHEP 03 (2021) 257

- MVA separates main BKGs
- 2D fit on myy and mbb in bins of mHH
 - Data-driven bkg estimate: H->yy bump on a smooth falling bkg

- Peaking bkg from ttH(yy)
 - Separate area to constraint it on the fit

Excellent Hyy resolution + fully reconstructable = possibiliity of separate mHH areas

8.4 (5.6) times the SM

bbyy and bbtt

smaller BR X Better BKG control

BR ~ 7.3%

bbtt

PRB 842.137531

- b-jet identification with deep NN [ref.]
- T-lepton ID with deep NN developed to this ana. [ref.] ==> Considerable BKG reduction
- Multiclassification MVA separates main BKGs,
 - fit on this MVA to extract signal

Considers events with merged-jet Hbb

3rd best channel to constrain anomalous qqHH and second best constraining the ttHH coupling !

3.4 (5.3) times the SM

- MVA separates ggF and VBF production from BKGs
 - $V \rightarrow 4$ jets tagger used on selection
 - Fit on reconstructed mbb

69 (142) times the SM

2nd best channel to constrain anomalous VBF production !

Events 30 20 °⊿

Data/ 0.5

0.0

Large Br = 28% X Large QCD bkg

• b-jet identification with deep NN [ref.] • V \rightarrow 4 jets ID with deep NN developed to this ana. [ref.] ==> Considerable BKG reduction

- MVA separates main BKGs
- Fit on $m\gamma\gamma$
 - Data-driven bkg estimate: H->yy bump on a smooth falling bkg

Newcomers: WWyy and TTyy

Explore excellent Hyy resolution, closing all HH decays possibilities

- The most complete CMS combination to date!
 - Latest theory developments!

Upper limit on the SM signal topology 3.5 (2.5) times SM

The HH combination in the SM-like scenario

The HH combination in the SM-like scenario

- The most complete CMS combination to date!
 - Latest theory developments!

20

Upper limits considering coupling scans κ_λ between [-1.4, 6.4] at 95% CL K₂v between [0.6, 1.4] at 95% CL

 $\kappa_{2V} = 0$ is excluded at more than 5 sigmas to any value of κ_{λ} or κ_{V}

Results in SM-like scenario - coupling constraints

Constraint in C2 between [-0.23 0.63] @ 95% CL •

Results in BSM-like scenario - c2 scan

• When looking at the best fit, slight preference for $C_2 \sim 0.4$, • Statistically compatible with the SM ($c_2 = 0$)

In the constraints of $\kappa\lambda$ and c2 we clearly see that the combined measurement gains from channels complementarity

24

Results in BSM-like scenario - shape benchmarks

Measurements of $\kappa\lambda$ and $\kappa2V$ are entangled with κt and κV (better measured in single H production)

- That is not the whole story
 - At one loop the single H production (with much higher cross section) and decay is sensitive to variations in $k_{\lambda} **$

Ultimate precision on the H potential in the SM scenario in a given dataset can only be achieved considering a global fit including all H and HH production modes

** These effects are considered in the HH combination

Changes signal topology and production rates

 Signal topology modifications can be modelled when the search is made considering an specific glanularity on fit (Simplified Template Cross Sections - STXS)

- The main channels for H pair production are considered
- Several production and decay modes for single H production are considered
 - A few including glanurality sufficient to consider a differential dependency in k_{λ}

Analysis	Integrated	Targeted H	Maximum
	luminosity (fb $^{-1}$)	production modes	granularity
$H \rightarrow 4l$	138	ggF, VBF, VH, t t H	STXS 1.2
${ m H} ightarrow \gamma \gamma$	138	ggF, VBF, VH, ttH, tH	STXS 1.2
$H \rightarrow WW$	138	ggF, VBF, VH	STXS 1.2
$H \rightarrow leptons (t\bar{t}H)$	138	ttH	Inclusive
$H \rightarrow b\overline{b} (ggF)$	138	ggF	Inclusive
$H \rightarrow b\overline{b} (VH)$	77	VH	Inclusive
$H \rightarrow b\overline{b} \ (t\overline{t}H)$	36	tīH	Inclusive
$H \rightarrow \tau \tau$	138	ggF, VBF, VH	STXS 1.2
$H \rightarrow \mu \mu$	138	ggF, VBF	Inclusive

- In a combined measurement we are able to
 - Achieve a better precision on K_{λ}
 - Also under minimal assumptions on t other H couplings

0		Best fit $\pm 1\sigma$		
	Hypothesis	Expected	Observed	
che	Other couplings fixed to SM	$1.0^{+4.6}_{-1.7}$	$3.1^{+3.}_{-3.}$	
	Floating ($\kappa_V, \kappa_{2V}, \kappa_f$)	$1.0^{+4.7}_{-1.8}$	$4.5^{+1.}_{-4.}$	
	Floating ($\kappa_V, \kappa_t, \kappa_b, \kappa_\tau$)	$1.0^{+4.8}_{-1.8}$	$4.7^{+1.}_{-4.}$	
	Floating ($\kappa_V, \kappa_{2V}, \kappa_t, \kappa_b, \kappa_\tau, \kappa_\mu$)	$1.0^{+4.8}_{-1.8}$	$4.7^{+1.}_{-4.}$	

When shall we extect to measure k_{λ} with H pairs?

• In the near future the LHC upgrade to HL-LHC

28

- brought to events observables:
 - Rejection of tracks from pile up interactions by adding requirements on track time

 - Removal of spurious secondary vertices in heavy-flavour tagging with time information

• Much higher peak luminosity than the LHC => data equivalent to 3000 fb⁻¹ in 10 years of operation

• **Upgraded CMS detector** to cope with higher

pileup and radiation damage

- the tracker will be way more granular
- HGCAL will have a very good reconstruction of the jet energy
- Introduction of Mip Timing Detector (CMS-TDR-020)
 - Dedicated detector for precision timing of charged minimum ionizing particles (MIPs)

• The MTD is instrumental in maintaining CMS resolution and reconstruction efficiency thanks to improvements

Pile-up jet suppression with the employment of Pile Up per Particle Identification (PUPPI) algorithm

Improvements on physics objects will bring gain in several searches: Including searches for H pairs

29

H pairs @ HL-LHC

- Projections: Yields scaled by a factor $k_L = L/L_{Run2}$ (L = integrated luminosity)
- - We are neglecting the effect of the increase on Pileup in the projections thanks to MTD

• That is a lower bound for the constraints: we expect significant improvements in this picture! • Already at Run 3 we are improving object identification algoritmns, trigger strategies and analyses techniques beyond the scope of mere scale with luminosity

• Efficiency of physics object reco, id, misid and resolution are assumed to be same as Run 2 (LHCYR4)

Channels: 4b, bbyy, bbtt, bbWW, multilepton

- The measurement of the H potential is one of the key physics topics in High Energy Physics • That is achieved directly by the searches for H pairs at LHC
 - Allows to access another rare quartic gauge coupling \rightarrow HHVV interactions
- CMS performed several searches for H pairs
 - Brand new results form the legacy combination from using full Run 2 data!
- The correlation of constraints on the Higgs couplings from HH and single H production is an important element towards precision measurements on the Higgs couplings
 - Achieve better precision on the H potential in the SM scenario under minimal assuptions
- We project the legacy HH combination to anticipate our sensitivity at the HL-LHC as a lower bound for future reach
 - Future is bright: in a pessimistic scenario we shall have the evidence for the process by 2040!

Conclusions

Thank you for attention!

Expected Improvements in LHC Run3

Confirmed % improvement in object and event reconstruction

- b-jets Triggers: 31-58% gain in efficiency in resolved 4b [here]
- b-tag efficiency: 5% better tagging + 10% on the mbb resolution improvement [here]
- τ -lepton Triggers 57% gain in efficiency in hadronic tau channels of bb $\tau\tau$ [here]
- T-lepton ID 5%-10% better tagging [here]

32

Parking triggers 10% gain in efficiency on 4b triggers, on top of trigger above-mentioned gain [here]

Those allow amelioration in analysis strategies, the gain can go beyond the shown expectations

Shape benchmarks idea and table of couplings

33

Stat. test of similarity between mHH shapes

Broad couplings scan ->distributions into clusters

We keep using the first version (couplings agnostic) as New Physics proxy, and the most updated set

- Recomputed @NLO precision in simulation [2019], improved ML strategy and including present constraints in H couplings [here]
 - Recomputed one more time, updating constraints in H couplings and added as LHC WG4 recomendation [2022]

Denchmark	κ_{λ}	κ _t	c_2	cg
JHEP04 BM1	7.5	1.0	-1.0	0.0
JHEP04 BM2	1.0	1.0	0.5	-0.8
JHEP04 BM3	1.0	1.0	-1.5	0.0
JHEP04 BM4	-3.5	1.5	-3.0	0.0
JHEP04 BM5	1.0	1.0	0.0	0.8
JHEP04 BM6	2.4	1.0	0.0	0.2
JHEP04 BM7	5.0	1.0	0.0	0.2
JHEP04 BM8	15.0	1.0	0.0	-1.0
JHEP04 BM8a	1.0	1.0	0.5	4/15
JHEP04 BM9	1.0	1.0	1.0	-0.6
JHEP04 BM10	10.0	1.5	-1.0	0.0
JHEP04 BM11	2.4	1.0	0.0	1.0
JHEP04 BM12	15.0	1.0	1.0	0.0
JHEP03 BM1	3.94	0.94	-1/3	0.75
JHEP03 BM2	6.84	0.61	1/3	0
JHEP03 BM3	2.21	1.05	-1/3	0.75
JHEP03 BM4	2.79	0.61	1/3	-0.7
JHEP03 BM5	3.95	1.17	-1/3	0.25
JHEP03 BM6	5.68	0.83	1/3	-0.7
JHEP03 BM7	-0.10	0.94	1	0.25
SM	1.0	1.0	0.0	0.0

