A new high-precision measurement of the B^0_d meson lifetime at the ATLAS experiment

Maria Smizanska, Lancaster University On behalf of the ATLAS collaboration

CERN LHC Seminar, 19 November 2024

Outline

- Introduction, Physics motivation
- ATLAS detector and performance in Run2
- Data-taking conditions
- Data and event selection
- Maximum-likelihood fit
- Efficiencies and corrections
- Systematic uncertainties
- Results
- Comparison to others
- Summary and Conclusions

Introduction, Physics motivation

- Precise measurements on B-lifetimes and their Ratios test our understanding of weak interactions.
- In Heavy Quark Expansion (HQE) theory the total decay rate $\Gamma = 1/\tau$ of a weekly decaying Heavy Hadron B_q is calculated by formula consisting of two terms:

$$\Gamma(\mathscr{B}_q) = \Gamma_3 + \delta \Gamma(\mathscr{B}_q)$$
 leading

Free *b*-quark decay:

free of non-perturbative uncertaintiesD Looks like the muon decay

$$\Gamma_3 \propto \frac{G_F^2 m_b^5}{192\pi^3} V_{cb}^2$$

 Quark masses are difficult to define, huge dependence on definition can be reduced by higher order **perturbative corrections**

Power-suppressed terms on the HQE:

subleading

+ suppressed with at least 2 powers of $1/m_b \Rightarrow$ small **0** Individual contributions are products of **perturbative** Wilson coefficients and **non-perturbative matrix elements** (determined with lattice-QCD, sum rules and/or from fits of experimental data of inclusive semi-leptonic decays - V_{cb})

• Overview of HQE calculations: historic development 1405.3601 C, and status quo 2402.04224, Feb 2024 C.

- The HQE prediction of decay rates suffers from huge theory uncertainties due to m_b^5 in Γ_3 term $\Gamma_d = 0.63^{+0.11}_{-0.07} \text{ ps}^{-1}$ Lenz, Piscopo, Rusov 2023
- In the lifetimes ratios the free quark decay rate Γ_3 exactly cancels leading to smaller uncertainties: $\Gamma_d/\Gamma_s = 1.003 \pm 0.006$ Lenz, Piscopo, Rusov 2023
- Lifetimes measurements can also serve to test Theory models of New Physics (BSM):

 $\Gamma(\mathscr{B}_q) = \Gamma_3^{\rm SM} + \Gamma_3^{\rm BSM} + \delta\Gamma(\mathscr{B}_q)^{\rm SM} + \delta\Gamma(\mathscr{B}_q)^{\rm BSM}$

- From theory considerations it would be very unlikely to have e.g. a 5% BSM contribution to the total decay rate, but it is also hard to exclude such a possibility at present.
- On the other hand excluding BSM effects to be larger than 5%, will already constrain many BSM scenarios
 Lenz2021 C
- In all scenarios: SM or BSM, the improvement in experimental measurements of lifetimes and their ratios, will serve to constrain theory models.

Introduction, physics motivations

The lifetime we measured in $B^0 \to J/\psi K^{*0}$ is the effective lifetime $\tau_{B^0_d}$ related to decay widths: Γ_L , Γ_H of the light and heavy mass eigenstates of $B^0_d - \overline{B^0_d}$ system via: Fleischer et al, 2011

$$\tau_{B^0} = \frac{1}{\Gamma_d} \frac{1}{1 - y^2} \left(\frac{1 + 2Ay + y^2}{1 + Ay} \right),\tag{1}$$

 $\Gamma_d = (\Gamma_L + \Gamma_H)/2; y = \Delta \Gamma_d/(2\Gamma_d) = (\Gamma_L - \Gamma_H)/(2\Gamma_d).$ The asymmetry A:

$$oldsymbol{A} = rac{oldsymbol{R}_H^f - oldsymbol{R}_L^f}{oldsymbol{R}_H^f + oldsymbol{R}_L^f}.$$

amplitudes R_{L}^{t} and R_{H}^{t} are defined via the summed decay rate of the members of the $B_{d}^{0} - \overline{B}_{d}^{0}$ system: Fleischer et al, 2011

$$\langle \Gamma(B^{0}(t)) \rangle = \Gamma(B^{0}(t)) + \Gamma(\overline{B}^{0}(t)) = R^{f}_{\mathsf{H}} \exp\left(-\Gamma_{\mathsf{H}} t\right) + R^{f}_{\mathsf{L}} \exp\left(-\Gamma_{\mathsf{L}} t\right).$$

Using the values of *y* and *A* from Heavy Flavour Averaging group (HFLAV) Ref.HFLAV:2023 \mathbb{C}^{*} , our $\tau_{B_{d}^{0}}$ value and Eg(1) allows Γ_{d} to be extracted. ATLAS measured $\Gamma_{s} = 0.6703\pm0.0014$ (stat.) ±0.0018 (syst.) ps⁻¹ from $B_{s}^{0} \rightarrow J/\psi\phi$ Eur. Phys. J. C 81 (2021) 342 \mathbb{C}^{*} . This result combined with $B_{d}^{0} \rightarrow J/\psi K^{*}$ allowed us to determine the ratio Γ_{d}/Γ_{s} .

ATLAS detector and feature important for this measurement

- Inner Detector: PIX, SCT and TRT, $p_{\rm T} > 0.5\,{
 m GeV},\, |\eta| < 2.5$
 - Run2: new IBL 25% improvement of time resolution with respect to Run1.
 - Time, mass resolutions remain stable within increasing pileup in Run 2
- Muon Spectrometer: triggering ($|\eta|$ < 2.4), precision tracking ($|\eta|$ < 2.7)

Data-taking conditions for this analysis

- The measurement uses 2015-2018 pp collision data at sqrt(s) = 13 TeV.
- Triggers: $J/\psi \rightarrow \mu^+\mu^-$, the muon p_T thresholds varying: 4 GeV, 6 GeV and 11 GeV.
 - Low *p*_T thresholds were activated in the end of fills when the instantaneous luminosity decreases.
- For events accepted for this analysis, an average number of pp interactions per bunch crossing (pile-up) was 31.
- No displaced J/ψ vertex cuts applied. Trigger tracking: transverse parameter d0 < 10mm on all tracks.

$B^0 \rightarrow J/\psi K^{*0}$ event display

A new high-precision measurement of the B_d^0 meson lifetime at the ATLAS experiment

Event reconstruction and selection

$B^0 ightarrow J/\psi K^{*0}$ candidates

- At least one $J/\psi \rightarrow \mu^+\mu^-$ with χ^2 ndof < 10; within mass window retaining 99.7% J/ψ candidates.
- K^* : Out of two hypothesis $K^+\pi^- / K^-\pi^+$ the one closer to K^* PDG mass selected.
- J/ψ and K^* fitted to a common vertex, constrained by fixing di-muon mass to J/ψ PDG. Only χ^2 /ndof <3 retained.
- 10% events have multiple $J/\psi K^*$ candidates (in average 2.1); the one with smallest $\chi^2/ndof$ selected.

Primary vertex (PV) selection

- For selected events the average pileup is 31: need to choose the best PV candidate where B_d^0 is produced.
- PV positions are recalculated after removing any tracks used in the B⁰_d.
- The PV candidate with the smallest 3D impact parameter, a₀ (min. distance between PV and the line extrapolated from the B⁰_d vertex in B⁰_d momentum direction), is used.

For each B_d^0 candidate, the proper decay time *t* is determined:

$$t=\frac{L_{xy}\ m_B}{p_{T_B}},$$

(2)

 p_{T_B} is transverse momentum of $m_B = PDG B_d^0$ mass. The transverse decay length, L_{xy} , is the distance in the transverse plane from PV to the B_d^0 decay vertex, projected onto p_{T_B} .

2D unbinned maximum-likelihood fit applied simultaneously to mass and proper decay time of B_d^0 candidates. Likelihood Function formula:

$$\ln L = \sum_{i=1}^{N} w(t_i) \ln[f_{\text{sig}} \mathcal{M}_{\text{sig}}(m_i) \mathcal{T}_{\text{sig}}(t_i, \sigma_{t_i}, p_{\text{T}_i}) + (1 - f_{\text{sig}}) \mathcal{M}_{\text{bkg}}(m_i) \mathcal{T}_{\text{bkg}}(t_i, \sigma_{t_i}, p_{\text{T}_i})].$$

- f_{sig} fraction of signal events in the total number of events, N.
- $\mathcal{M}_{sig}, \mathcal{T}_{sig}$ mass and time signal PDFs
- $\bullet~\mathcal{M}_{bkg}, \, \mathcal{T}_{bkg}$ mass and time Backround PDFs
- The mass m_i , the proper decay time t_i , its uncertainty σ_i and the B_d^0 candidate transverse momentum p_{T_i} are the values measured from the data for each event *i*.
- weight w_i accounts for event selection efficiency, that will be explained later.

Mass PDFs of Signal and Background

Signal mass is modelled with a Johnson S_U -distribution Johnson

$$\mathcal{M}_{\rm sig}(m_i) = \frac{\delta}{\lambda \sqrt{2\pi} \sqrt{1 + \left(\frac{m_i - \mu}{\lambda}\right)^2}} \exp\left[-\frac{1}{2} \left(\gamma + \delta \sinh^{-1}\left(\frac{m_i - \mu}{\lambda}\right)\right)^2\right]$$

where μ , γ , δ and λ are free parameters of fit.

Background has two components: 1. prompt - J/ψ produced in pp $\rightarrow J/\psi X$, combined with random K^* . 2. combinatorial - J/ψ from any *b*-hadron decay combined with random K^* . They are modelled by sum of linear and sigmoid functions:

$$\mathcal{M}_{\text{bkg}}(m_i) = f_{\text{poly}}(1 + p_0 \cdot m_i) + (1 - f_{\text{poly}}) \left(1 - \frac{s(m_i - m_0)}{\sqrt{1 + (s(m_i - m_0))^2}} \right)$$

where f_{poly} relative size of the two components and m_0 , s and p_0 are parameters of the fit.

Proper-decay Time PDFs of Signal and Background

Signal PDF: exponential function convolved by Resolution function R.

$$P_{\text{sig}}(t_i | \sigma_{t_i}, p_{\text{T}_i}) = E(t', \tau_{B^0}) \otimes R(t' - t_i, \sigma_{t_i})$$

 $E(t^{'}, \tau_{B^{0}}) = (1/\tau_{B^{0}}) \exp(-t^{'}/\tau_{B^{0}})$ for $t^{'} \ge 0$, with $\tau_{B^{0}}$ - the fitted B^{0}_{σ} lifetime.

Background PDF:

$$P_{\text{bkg}}(t_i|\sigma_{t_i}, p_{\text{T}_i}) = \left(f_{\text{prompt}} \cdot \delta_{\text{Dirac}}(t') + (1 - f_{\text{prompt}})\sum_{k=1}^{3} b_k \prod_{l=1}^{k-1} (1 - b_l) E(t', \tau_{\text{bkg}_k})\right) \otimes R(t' - t_i, \sigma_{t_i})$$

Dirac function δ_{Dirac} : direct background; 3 exponentials $E(t', \tau_{\text{bkg}_k})$: components of combinatorial background; τ_{bkg_k} , and fractions: f_{prompt} and b_k are free parameters of fit.

Resolution function *R***:** modelled as a sum of three Gaussian distributions with widths: $S^{(k)} \sigma_{\tau_i}$

$$R(t'-t_i,\sigma_{t_i}) = \sum_{k=1}^{3} f_{\text{res}}^{(k)} \frac{1}{\sqrt{2\pi} S^{(k)} \sigma_{t_i}} \exp\left(\frac{-(t'-t_i)^2}{2(S^{(k)} \sigma_{t_i})^2}\right)$$

three $f_{res}^{(k)}$ fractions and scale factors $S^{(k)}$ are free parameters of fit, σ_{τ_i} is the per-candidate time error, extracted from data in the vertex fit of each $B^0 \rightarrow J/\psi K^{*0}$.

Conditional probability of the time uncertainty σ_{τ_i} and p_{T_i} of B_d^0

Events / 0.0034 ps 9 08 0.0034 ps

400

200

0.15

σ.(J/w K*) [ps]

- Per-candidate time errors σ_{τ_i} , extracted from data in the vertex fit of each B_d^0 are used in the Resolution function R for deconvolution of proper decay times.
- σ_{τ_i} are different for signal and background, see fig Left. Same it true for p_T of B_d^0 .

0.05 0.1

• To account for these differences in the likelihood fit, the 2D probability terms $C_i(\sigma_{\tau_i}, p_{\Gamma_i})$ are introduced into Time PDF terms T_i for Signal and Bg, j - stands for Signal or Bg. The method first used in G.Punzi

σ (J/w K*) [ps]

 $\mathcal{T}_{i}(\tau_{i},\sigma_{\tau_{i}},\boldsymbol{p}_{\mathrm{T}_{i}}) = \boldsymbol{P}_{i}(\tau_{i},\sigma_{\tau_{i}},\boldsymbol{p}_{\mathrm{T}_{i}}) \cdot \boldsymbol{C}_{i}(\sigma_{\tau_{i}},\boldsymbol{p}_{\mathrm{T}_{i}}),$ (3)

102

 10^{2}

10

σ.(J/ψ K*) [ps]

0.1

Left: σ_{τ_i} for signal and Background. Middle and Right: 2D conditional probability distribution of the per-candidate σ_{τ_i} and p_{T_c} of B_d^0 candidates, illustrating the strong dependence between these observables for both (a) signal and (b) background. The sPlot technique Pivk:2004ty is used to separate the signal and background distributions in data.

Efficiencies and corrections

- Trigger, offline reconstruction, event selections bias reconstructed proper-decay time distribution.
- Trigger and offline tracking impose $|d_0| < 10$ mm, for all four final-state tracks of $B^0 \rightarrow J/\psi K^{*0}$, resulting in inefficiency at large times.
- Inefficiency effects are determined by signal MC, passed through simulation of detector response & triggers, followed by offline tracking, vertexing and event selections as data.

Ratio of proper decay time distributions before and after the whole chain, were fitted by:

$$1/w(t_i) = p_0 \cdot [1 - p_1 \cdot (\operatorname{Erf}((t_i - p_3)/p_2) + 1)]$$
(4)

 $w(t_i)$ are used to re-weight each event in Likelihood fit. The fit is applied individually for each year, due to their different trigger and data-taking conditions.

Source of uncertainty	Systematic uncertainty [ps]
ID alignment	0.00108
Choice of mass window	0.00104
Time efficiency	0.00130
Best-candidate selection	0.00041
Mass fit model	0.00152
Mass-time correlation	0.00229
Proper decay time fit model	0.00010
Conditional probability model	0.00070
Fit model test with pseudo-experiments	0.00002
Total	0.0035

Systematic uncertainties: Inner detector alignment

- ID misalignment effects: dominated by global length scale biases originating from ID geometry radial and longitudinal distortions along track trajectory.
- These manifest themselves as a shift in the reconstructed masses of known resonances, e.g. $J/\psi \rightarrow \mu^+\mu^-$ Eur. Phys. J. C 80 (2020) 1194 C.

- In our analysis B_d^0 tracks are re-fitted with the J/ψ mass constrained to PDG, effectively removing the misalignment effect from the data. The impact of misalignment estimated by alternative fit: B_d^0 vertex re-fitted without PDG constrain.
- Additionally, to account for the momentum bias affecting hadrons from K^{*0} their p_T are altered by −0.085% Eur. Phys. J. C 80 (2020) 1194 C.
- $\bullet\,$ The two effects summed in quadrature, give the systematics: 0.9 $\sigma\,$

Kinematic reflections

• MC models of not negligible kinematic reflections $B^+ \to J/\psi K^+$, $B_s \to J/\psi K^+ K^-$ and $B^0 \to J/\psi \rho(\pi^+\pi^-)$, are included in the alternative fit to data with freely floating fractions.

Varying Sig, Bg mass PDF

- Alternative signal mass models, the Johnson S_U-distribution is replaced by a double-sided Crystal Ball distribution or Student's *t*-distribution, giving systematics
- Alternative background mass models: the sigmoid component is replaced by arctan function
- Both items summed give systematics 1.3 σ

Systematic uncertainties: Mass-time correlation systematics

- Correlations between the invariant mass and the pseudo-proper decay time, and their potential impact on the fit results, are studied.
- No mass-time correlation in signal PDF proven by MC.
- For background the correlations are studied in data. First, applying the default time Background PDF $P_{bkg}(t_i, \sigma_i, p_{T_i})$ fit in each of the 6 mass sideband bins in data. Fractions f_{prompt} and b_1 , b_2 determined in each bin were then fitted to extract their dependence on mass. The best description achieved by linear functions.

Based on this information, an alternative fit model, in which the background PDF term P_{bkg}(t_i, σ_i, p_{T_i}) is constructed with the parameters accounting for mass-dependence:

 $f_{\text{prompt}}(m_i) = a + b(m_i - 5.279 \text{ GeV}), b_1(m_i) = c_1 + d_1(m_i - 5.279 \text{ GeV}) \text{ and } b_2(m_i) = c_2 + d_2(m_i - 5.279 \text{ GeV}). a, b, c_1, d_1, c_2 \text{ and } d_2 \text{ are free parameters of the fit. A difference of lifetime w.r.t default fit is 0.00228 ps (1.9 <math>\sigma$)

Time efficiency correction systematics

- Two alternative functions fitting the time efficiency histogram, replacing the default error function, were: hyperbolic tangent function or $(x^2 + 1)^{-1/2}$. The larger of the changes in the fitted lifetime, of size $0.6\sigma_{\text{stat}}$ - taken as a systematic uncertainty.
- Systematic effects due to limited MC statistic, used to build the time efficiency histogram, was
 estimated by repeating the fit with a large number of alternative time efficiency functions, obtained by
 smearing the number of MC events in the time bins, leading to 0.8σ_{stat}.
- An alternative fit using data events with t < 8 ps, is performed to validate the modelling of the efficiency for high lifetimes, where the efficiency decrease is large, lead to small systematics $0.5\sigma_{\text{stat}}$.

Results: The B^0 effective lifetime and the mass and time projections of the likelihood fit

The B^0 effective lifetime value measured with a total of 2450500 ± 2400 $B^0 \rightarrow J/\psi K^{*0}$ signal events The measured effective lifetime is

 $\tau = 1.5053 \pm 0.0012$ (stat.) ± 0.0035 (syst.) ps.

- Mass fit projection (left). Proper decay time fit projections in two different ranges: (-0.5; 1.0) ps (Middle) and (1; 20) ps (Right).
- Solid blue line total fit, dashed red line signal.
- The lower panels: ratio of data point to the fit value. The green band the envelope of model variations included in the systematic uncertainty, the bars on the data points indicate statistical uncertainties. Plot -right the model variation band too small to be visible.

Parameters fitted in mass-time Likelihood fit

	Starting		
Parameter	Value	Fitted Value	Error
p_0	-0.00015	-0.00015	1.8018e-07
m_0	4755.77315	5067.68398	2.2599
<i>S</i>	0.00940	0.00990	0.00028
δ_{sig}	1.26524	1.10875	0.00388
γ_{sig}	-0.05542	-0.00000	2e-05
λ_{sig}	40.57214	36.27316	0.13244
m_0	5277.87937	5278.96001	0.0285
$f_{\rm prompt}$	0.60000	0.93427	0.00138
$f_{\rm prompt}$	0.60000	0.63547	0.00048
$f_{\rm res;1}$	0.82000	0.83456	0.00099
$f_{\rm res;2}$	0.16000	0.15896	0.00096
$f_{ m sig}$	0.22000	0.23175	0.00022
$f_{\rm bkg;1}$	0.19891	0.29218	0.00387
$f_{\rm bkg;2}$	0.41310	0.41696	0.00376
$\tau_{\rm bkg;1}$	0.50000	0.41574	0.00589
$\tau_{\rm bkg;2}$	1.54400	1.57023	0.00483
$\tau_{\rm bkg;3}$	0.13970	0.12932	0.00128
SF_1R	1.00000	0.99267	0.00068
SF_2R	1.70000	1.74252	0.00438
SF_3R	5.40000	5.35241	0.04473
$ au(B^0)$	1.51600	1.50529	0.00116

There are no high correlations of the fitted B_d^0 lifetime with other parameters. The highest ones are:

- 18% with f_{sig} fraction of signal events
- 12% with τ_{bkg_2} the lifetime of one of three components of Combinatorial Background, that has the fitted value $\tau_{bkg_2} = 1.5702$ ps rather close to the signal one.

Results: A consistency and stability test over data taking periods

As a consistency and stability test, the B^0 lifetime value was fitted separately for each data-taking period (2015+2016, 2017 and 2018). Figure shows the degree of stability over time. The *p*-value for consistency of the three individual results, accounting for just statistical uncertainties is 0.038.

The fitted values of the B^0 lifetime, measured with $B^0 \rightarrow J/\psi K^{*0}$ decays, for the 2015+2016, 2017 and 2018 subsamples compared to the value for the whole sample. The B^0 lifetime value for each subsample is shown by a black point, with the error bar indicating the statistical uncertainty.

- The current ATLAS result in $B^0 \rightarrow J/\psi K^{*0}$ channel.
- The previous ATLAS result Phys. Rev. D 87 (2013) 032002 \bigcirc in the $B^0 \rightarrow J/\psi K_S^0$ channel.
- Latest LHCb results JHEP 04 (2014) 114 \mathbb{C}° in $B^{0} \rightarrow J/\psi K^{*0}_{s}$ and $B^{0} \rightarrow J/\psi K^{0}_{S}$ decays and Phys. Lett. B 736 (2014) 446 \mathbb{C}° in the $B^{0} \rightarrow K^{+}\pi^{-}$.
- Latest CMS Eur. Phys. J. C 78 (2018) 457 C⁴ combined result for $B^0 \rightarrow J/\psi K^{*0}$ and $B^0 \rightarrow J/\psi K^0_S$ decays.
- Tevatron experiments: D0 Phys. Rev. Lett. 114 (2015) 062001 Therefore in the $B^0 \to D^- \mu^+ \nu_\mu$ channel, and CDF Phys. Rev. Lett. 106 (2011) 121804 With a combined result for $B^0 \to J/\psi K^{*0}$ and $B^0 \to J/\psi K^0_S$.
- e^+e^- colliders: Belle II Phys. Rev. D 107 (2023) L091102C^{*} in the $B^0 \rightarrow D^{(*)-}K^+/\pi^+$ channel and the last result from BaBar Phys. Rev. D 73 (2006) 012004C^{*} in the $B^0 \rightarrow D^{*+}\ell^-\bar{\nu}_\ell$. Belle PhysRevD.71.07990, 2005C^{*} this combination includes B^0_d decays to $D^{*-}\ell^+\nu$, $D^{*-}\pi^+$, $D^-\pi^+$, $D^{*-}\rho^+$, $J/\psi K^{*0}$, $J/\psi K^0_s$.

Results: Determination of the B_d^0 average decay width Γ_d and the ratio Γ_d/Γ_s

Γ_d

• We determine Γ_d from our measured effective lifetime τ_{B^0} , using Eq (1) and input values $2y = \Delta \Gamma_d / \Gamma_d = 0.001 \pm 0.010$ and asymmetry $A = -0.578 \pm 0.136$ from HFLAV:2023 \checkmark :

 $\Gamma_d = 0.6639 \pm 0.0005 \text{ (stat.)} \pm 0.0016 \text{ (syst.)} \pm 0.0038 \text{ (ext.)} \text{ ps}^{-1}$

The uncertainty denoted 'ext.' originates from the HFLAV.

• The value Γ_d is in agreement with HQE theory of $0.63^{+0.11}_{-0.07}$ ps⁻¹ Lenz et al. 2023

Γ_d/Γ_s

• Using $\Gamma_s = 0.6703 \pm 0.0014$ (stat.) ± 0.0018 (syst.) ps⁻¹ measured by the ATLAS Eur. Phys. J. C 81 (2021) 342 C the resulting Γ_d/Γ_s ratio is

 $\Gamma_d/\Gamma_s = 0.9905 \pm 0.0022$ (stat.) ± 0.0036 (syst.) ± 0.0057 (ext.)

- the statistical, systematic and external uncertainties are propagated from the quantities above. In Γ_d/Γ_s systematic uncertainties of the ATLAS measurements of τ_{B0} and Γ_s primarily come from different sources. They are therefore treated as uncorrelated.
- Γ_d/Γ_s agrees with theory HQE and lattice QCD models prediction.

Summary

- ATLAS preformed a measurement of B_d^0 effective lifetime and the average decay width Γ_d using $B^0 \rightarrow J/\psi K^{*0}$ events reconstructed from a 140 fb^{-1} data sample of pp collisions collected with the ATLAS detector during the \sqrt{s} =13 TeV LHC run.
- The B⁰ effective lifetime is measured to be 1.5053 ± 0.0012(stat) ± 0.0035(syst) ps. This results is compatible with other experimental measurements and is the most precise measurement to date.
- The measured average decay width of the heavy and light B^0 mass eigenstates is $\Gamma_d = 0.6639 \pm 0.0005$ (stat.) ± 0.0016 (syst.) ± 0.0038 (ext.) ps^{-1} This value is in good agreement with the theory prediction.
- The measured average decay width Γ_d is combined with the average decay width Γ_s measured previously by ATLAS to obtain the ratio $\Gamma_d/\Gamma_s = 0.9905 \pm 0.0022$ (stat.) ± 0.0036 (syst.) ± 0.0057 (ext.) This result is compatible with the theory predictions from HQE and lattice QCD calculations as well as with the experimental average.

Backup Slides

Detailed Comparison of B^0 lifetime, Γ_d and Γ_d/Γ_s with others

- ATLAS B^0 lifetime 1.5053 \pm 0.0012(stat) \pm 0.0035(syst) ps, is the most precise measurement to date.
 - Comparing to latest LHC measurements
 - LHCb $B^0 \rightarrow J/\psi K_S^0$ lifetime is smaller than ATLAS and well compatible within 0.4 σ . The other two LHCb results $B^0 \rightarrow J/\psi K^{*0}$ and $B^0 \rightarrow K^+\pi^-$ have lifetimes larger than ATLAS by 2.3 σ and 1.5 σ . The CMS combining $B^0 \rightarrow J/\psi K_S^0 B^0 \rightarrow J/\psi K^{*0}$ is within 1.1 σ from ATLAS.
 - Comparing to non LHC experiments
 - CDF and Belle II results combining the B⁰ → J/ψK^S_S B⁰ → J/ψK^{*0} are compatible with ATLAS within 0.1σ and 0.4σ respectively, while the older Belle result, combining six channels, has lifetime larger than ATLAS by 2.1σ.
 - The latest world average
 - 1.517 ± 0.004 ps PDG2024 C differs from ATLAS by 2.1 σ .
- ATLAS Γ_d = 0.6639 \pm 0.0005 (stat.) \pm 0.0016 (syst.) \pm 0.0038 (ext.) $\ ps^{-1}$ value
 - is compatible with the HQE theory of $0.63^{+0.11}_{-0.07}$ ps⁻¹ Lenz et al. 2023 C within 0.3 σ , σ combining both sources.
- ATLAS $\Gamma_d/\Gamma_s = 0.9905 \pm 0.0022$ (stat.) ± 0.0036 (syst.) ± 0.0057 (ext.)
 - is compatible with the theory HQE and lattice QCD models Lenz et al. 2023 \mathbb{C}^{\bullet} , within 1.4 σ and 0.4 σ , respectively, and with the experimental average (1.001 ± 0.004) HFLAV:2023 \mathbb{C}^{\bullet} within 1.3 σ

- Measurement of effective lifetime in $B^0_{(s)} \rightarrow \mu^+ \mu^-$ JHEP 09 (2023) 199 W
- Measurement of Λ_b^0 lifetime in $\Lambda_b^0 \to J/\psi \Lambda^0$ and B_d^0 lifetime in $B_d^0 \to J/\psi K_S^0$ decays PhysRevD.87.032002, 2013
- Measurement of the relative width difference $\Delta \Gamma_d / \Gamma_d$ of the $B^0_d \overline{B^0_d}$ system with the ATLAS detector JHEP06(2016)081
- Measurement of the CP-violating phase, the width difference $\Delta\Gamma_s$ between the meson mass eigenstates and the average decay width Γ_s in the $B_s \rightarrow J/\psi\phi$ decay. Eur. Phys. J. C 81 (2021) 342