

Federal Ministry of Education and Research

Updates on transient beam loading in the RCS chain

Leonard Thiele (University of Rostock, CERN), Fabian Batsch S. Albright, R. Calaga, H. Damerau, A. Grudiev, I. Karpov, U. van Rienen

litended by The European of

uropean Union (EU). Views and opinions expressed are however those of the author only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

Injection at nominal Voltage and 0 cavity phase leads to a **non-nominal equilibrium voltage** → Why is this the case?

Implementation follows the description in [2] I. Karpov, "Transient beam loading and rf power evaluation for future circular colliders"

- Two parameters can be used adjusted to reach optimum power efficiency: Loaded quality factor Q_L and cavity detuning $\Delta \omega$
- Both parameters have an optimum point, for which the generator power and reflected power are minimised.

$$I_g = \left[\frac{V}{2(R/Q)Q_L} + I_{b,DC}F_b\sin(\phi_s)\right] + i\left[I_{b,DC}F_b\cos(\phi_s) - \frac{V\Delta\omega}{\omega(R/Q)}\right] \qquad \Delta\omega_{opt} = \omega_{rf}\frac{(R/Q)|F_b|I_{b,DC}\cos(\Phi_s)}{V_{cav}}$$
(12)

$$I_r = \left[\frac{V}{2(R/Q)Q_L} - I_{b,DC}F_b\sin(\phi_s)\right] - i\left[I_{b,DC}F_b\cos(\phi_s) - \frac{V\Delta\omega}{\omega(R/Q)}\right] \qquad Q_{L,opt} = \frac{V_{cav}}{2(R/Q)|F_b|I_{b,DC}\sin(\Phi_s)}$$
(13)

- BUT: the optimum of Q_L is dependent on the chosen $\Delta \omega$
- Since we will change the $\Delta \omega$ to make the acceleration stable, the Q_L must be adjusted as well.

"Optimal" Quality factor

Corrected Quality factor

Equilibrium is closer to the setpoint (green dashed line), but not oscillating around it.

Implementation follows the description in [1] I. Karpov, "Transient beam loading and rf power evaluation for future circular colliders"

29/07/2024

Updates on transient beam loading in the RCS chain / 10th Meeting Task 6.1 / Leonard Thiele / University of Rostock, CERN

Transient beam loading in the Muon Collider

 In the Muon Collider, the entire beam charge is concentrated in 2 bunches, leaving the rest of the ring empty.

- High difference between average and peak current in the MuCol.
- Simulation assumes only slow changes of the beam current per simulation step
- \rightarrow not the case for MuCol.
- Solution: \rightarrow increase time resolution of the simulation from 1 t_{rf} to 0.1 t_{rf}

Cavity voltage amplitude/phase Distributed beam

Corrected Quality factor; Time resolution = $1 t_{rf}$

With an averaged beam, the amplitude is exactly on the setpoint voltage

Cavity voltage amplitude/phase increased time resolution

Corrected Quality factor; Time resolution = $1 t_{rf}$

Now, the voltage amplitude is oscillating around the setpoint, as expected

7

Cavity voltage amplitude/phase increased time resolution

Having the beam spread out over 10 buckets has the same effect as increasing the time resolution by a factor of 10 **BUT**: saves simulation time

The formulas of the cav. phase and amplitude are coupled: the per-timestep change cannot be too large

Cavity voltage amplitude/phase Lowering the setpoint

- As the cavity voltage is partially above the setpoint during parts of the acceleration, the setpoint needs to be lowered
- \rightarrow slightly more cavities are required

• To avoid the voltage change at the beginning of the acceleration, one can inject at the equilibrium voltage directly.

10

Resulting parameter changes

RF powering parameters including adjustments

RF powering parameters before the changes

	Unit	RCS1	RCS2	RCS3	RCS4	All		Unit	RCS1	RCS2	RCS3	RCS4	All
Synchronous phase	[°]	135	135	135	135	-	Synchronous phase	[°]	135	135	135	135	-
Combined beam current (μ^+ and μ^-)	[mA]	43.3	38.9	19.8	5.5	-	Combined beam current $(\mu^+ \text{ and } \mu^-)$	[mA]	43.3	38.9	19.8	5.5	-
Total RF voltage	[GV]	20.9	11	16	90	138	Total RF voltage	[GV]	20.9	11	16	90	138
Total number of cavities	-	670	360	516	2890	4436	Total number of cavities	-	683	366	524	2933	4506
Total number of cryomodules	-	75	41	58	322	496	Total number of cryomodules	-	76	41	59	326	502
Total RF section length	[m]	949	519	734	4074	6275	Total RF section length	[m]	962	519	746	4125	6351
Combined peak beam power (μ^+ and μ^-)	[MW]	80	39	28	44	-	Combined peak beam power $(\mu^+ \text{ and } \mu^-)$	[MW]	80	39	28	44	-
Total peak RF power	[MW]	1023	499	360	561	-	Total peak RF power	[MW]	1020	499	363	563	-
External Q-factor	$[1 \times 10^{6}]$	0.711	0.790	1.558	5.605	-	External Q-factor	$[1 \times 10^{6}]$	0.696	0.775	1.533	5.522	-
Cavity detuning for beam loading comp.	[kHz]	-1.294	-1.164	-0.590	-0.164	-	Cavity detuning for beam loading comp.	[kHz]	-1.320	-1.186	-0.600	-0.166	-
Total number of klystrons	-	112	52	37	57	258	Total number of klystrons	-	114	53	38	57	262
Cavities per klystron	-	6	7	14	51	-	Cavities per klystron	-	6	7	14	52	-
Beam acceleration time	[ms]	0.340	1.099	2.356	6.421	-	Beam acceleration time	[ms]	0.340	1.099	2.356	6.421	-
Cavity filling time	ms	0.174	0.193	0.381	1.373	-	Cavity filling time	[ms]	0.171	0.190	0.375	1.352	-
RF pulse length	ms	0.514	1.292	2.737	7.794	-	RF pulse length	[ms]	0.510	1.289	2.731	7.773	-
RF duty factor	[%]	0.190	0.572	1.222	3.369	-	RF duty factor	[%]	0.188	0.570	1.219	3.359	-
FPC peak power	[kW]	1150	1035	524	145	-	FPC peak power	[kW]	1128	1017	516	144	-
Cavity power incl. distib. losses	[kW]	1484	1336	677	188	-	Cavity power incl. distib. losses	[kW]	1455	1312	666	185	-
Average RF power	[MW]	1.942	2.851	4.394	18.896	28.082	Average RF power	[MW]	1.919	2.844	4.427	18.921	28.112
Average wall plug power for RF System	[MW]	2.988	4.386	6.760	29.070	43.204	Average wall plug power for RF System	[MW]	2.953	4.376	6.811	29.110	43.250

- Slightly higher number of cavities
- Different Q-factor and detuning
- Resulting power consumption is not differing by a lot

- Adjustment of Q_{L-opt} in dependence of $\Delta \omega$ was performed.
- Time resolution of the simulation was increased to reach the anticipated equilibrium voltage.
- Voltage setpoint was lowered, which led to a slight increase in required cavities.
- Integrate transient beam loading calculation into beam dynamics simulation.
- Perform simulations for CERN-site based options.
- Perform simulations with different cavities.

SPONSORED BY THE

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them. This work has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 13E18CHA)

Federal Ministry of Education and Research

Changing cavity voltage (last turn MuCol MuCol

Changing cavity voltage (last turn MuCol MuCol

Forumla collection

$$\frac{dA(t)}{dt} = -\frac{A(t)}{\tau} + (R/Q)\omega_{rf} \times \left\{ I_{g,c}\cos[\phi_L - \phi(t)] - \frac{A_b(t)\cos[\phi_s - \phi_b(t) + \phi(t)]}{2} \right\}, \quad (7) \quad I_g e^{i\Phi_L} = \frac{V_{cav}}{2(R/Q)} \left(\frac{1}{Q_L} - 2i\frac{\Delta\omega}{\omega_{rf}} \right) + \frac{\langle I_{b,rf} \rangle}{2} \quad (9) \quad (1) \quad Q_{L,opt} = \frac{V_{cav}}{Q_{L,opt}} \left(\frac{1}{Q_L} - 2i\frac{\Delta\omega}{\omega_{rf}} \right) + \frac{\langle I_{b,rf} \rangle}{2} \quad (1) \quad Q_{L,opt} = \frac{V_{cav}}{Q_{L,opt}} \left(\frac{1}{Q_L} - 2i\frac{\Delta\omega}{\omega_{rf}} \right) + \frac{\langle I_{b,rf} \rangle}{2} \quad (1) \quad Q_{L,opt} = \frac{V_{cav}}{Q_{L,opt}} \left(\frac{1}{Q_L} - 2i\frac{\Delta\omega}{\omega_{rf}} \right) + \frac{\langle I_{b,rf} \rangle}{2} \quad (1) \quad Q_{L,opt} = \frac{V_{cav}}{Q_{L,opt}} \left(\frac{1}{Q_L} - 2i\frac{\Delta\omega}{\omega_{rf}} \right) + \frac{\langle I_{b,rf} \rangle}{2} \quad (1) \quad Q_{L,opt} = \frac{V_{cav}}{Q_{L,opt}} \left(\frac{1}{Q_L} - 2i\frac{\Delta\omega}{\omega_{rf}} \right) + \frac{\langle I_{b,rf} \rangle}{2} \quad (1) \quad Q_{L,opt} = \frac{V_{cav}}{Q_{L,opt}} \left(\frac{1}{Q_L} - 2i\frac{\Delta\omega}{\omega_{rf}} \right) + \frac{\langle I_{b,rf} \rangle}{2} \quad (1) \quad Q_{L,opt} = \frac{V_{cav}}{Q_{L,opt}} \left(\frac{1}{Q_L} - 2i\frac{\Delta\omega}{\omega_{rf}} \right) + \frac{\langle I_{b,rf} \rangle}{2} \quad (1) \quad Q_{L,opt} = \frac{V_{cav}}{Q_{L,opt}} \left(\frac{1}{Q_L} - 2i\frac{\Delta\omega}{\omega_{rf}} \right) + \frac{\langle I_{b,rf} \rangle}{2} \quad (1) \quad Q_{L,opt} = \frac{V_{cav}}{Q_{L,opt}} \left(\frac{1}{Q_L} - 2i\frac{\Delta\omega}{\omega_{rf}} \right) + \frac{\langle I_{b,rf} \rangle}{2} \quad (1) \quad Q_{L,opt} = \frac{V_{cav}}{Q_{L,opt}} \left(\frac{1}{Q_L} - 2i\frac{\Delta\omega}{\omega_{rf}} \right) + \frac{\langle I_{b,rf} \rangle}{2} \quad (1) \quad (1$$

 $\Delta E = \cos(\Phi_s - \Phi(t)) * A(t) (16)$ for $\Phi_b = \Phi_s = const.$ $\Phi_s = arcc$

https://journals.aps.org/prab/abstract/10.1103/Phy sRevAccelBeams.22.081002

$$\Phi_s = \arccos\left(\frac{\Delta E}{A(t)}\right) \ (14)$$

$$\Phi_b = \arccos\left(\frac{\Delta E}{A(t)}\right) + \Phi(t)$$
(15)

29/07/2024

[1]: I. Karpov, Transient beam loading and rf power evaluation for future circular colliders <u>https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.22.0810</u> 02