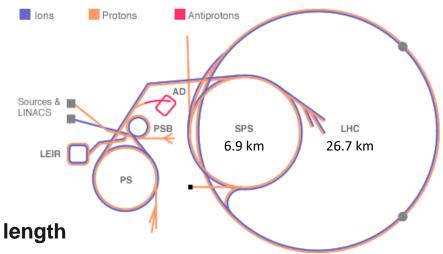
CERN-based options for the RCS chain

F. Batsch, L. Thiele, S. Albright, D. Amorim, R. Calaga, H. Damerau, A. Grudiev, I. Karpov,...

10th Meeting of Task 6.1 MuCol Design Study 29/7/2024

1

- 1. Possible scenarios for SPS and LHC
- 2. Parameters for these scenarios and their comparison
- 3. Usage of HTS in normal RCSs
- 4. Conclusion


RCS chain options for CERN-based scenarios

Start points:

- SPS with 6912m circumference, LHC with 26659m
- Magnet strengths of 1.8T (NC) and 10T (SC)
- Magnet filling factors of the tunnel
- Optimization tool by D. Amorim minimizes the four linear gradients times length
- The energy reach of RCS 4 is to be maximized (for the <u>optimization tool</u>, see appendix)

Possible scenarios:

- 3 RCS: 1x normal conducting in SPS tunnel, 2x (NC + hybrid) in LHC tunnel
- 3 RCS: 2x (NC + hybrid) in SPS tunnel, 1x hybrid in LHC tunnel
- 2 RCS: NC in SPS tunnel and hybrid in LHC tunnel

Common case: the normal conducting SPS

This RCS is common in all three scenarios:

- \rightarrow The ejection energy is set by the maximum reach defined by B_{nc}
- \rightarrow ~ 400 GeV ejection energy

	Parameter	Symbol	Unit	RCS 1		
	RCS type	_	[-]	Normal		
	Injection energy	$E_{\rm inj}$	[eV]	63.000G		
	Ejection energy	$E_{ m ej}$	[eV]	400.000G		
	Energy ratio	$E_{ m ej}/E_{ m inj}$	[-]	6.349		
	Injection Lorentz factor	$\gamma_{ m inj}$	[-]	597.261		
	Ejection Lorentz factor	$\gamma_{ m ej}$	[-]	3.787k		
	Survival rate	$N_{ m ej}/N_{ m inj}$	[-]	0.90		
	Acceleration time	$ au_{ m acc}$	[s]	399.748u		
	Average accel. gradient	$G_{ m avg}$	[V/m]	2.814M		
	Ramp rate	$\dot{B}_{ m NC}$	[T/s]	3.793k		
	Machine radius	R	[m]	1.100k		
	Circumference	$2\pi R$	[m]	6.910k		
	Pack fraction	-	[-]	0.67		
	Bend radius	$ ho_B$	[m]	741.440		
	Total NC dipole length	$L_{ m NC}$	[m]	4.659k		
	Total SC dipole length	$L_{ m SC}$	[m]	0.000		
	SC dipole field	$B_{ m SC}$	[T]	10.000		
	Average injection dipole field	$B_{ m inj}$	[T]	283.900m		
	Average ejection dipole field	$B_{ m ej}$	[T]	1.800		
	Injection NC dipole field	$B_{ m NC,inj}$	[T]	283.900m		
	Ejection NC dipole field	$B_{ m NC,ej}$	[T]	1.800		
Exam	Number of RF cavities	n_{RF}	[-]	883		
^{Example} valu	Example table created with D. Amorim's <u>online tool</u>					

Scenario 2xSPS, 1x LHC

Not of interest!

Table 5: General properties of: 2xSPS (normal + hybrid), 1x LHC hybrid							
Parameter	Symbol	Unit	RCS SPS 1	RCS SPS 2	RCS LHC		
Injection energy	$E_{ m inj}$	[GeV]	63	394	936		
Ejection energy	$E_{ m ej}$	[GeV]	394	936	3950		
Energy ratio	$E_{\rm ej}/E_{\rm inj}$	[-]	6.3	2.4	4.2		
Injection Lorentz factor	$\gamma_{ m inj}$	[-]	597	3730	8864		
Ejection Lorentz factor	$\gamma_{ m ej}$	[-]	3730	8864	37362		
Survival rate	$N_{\rm ej}/N_{\rm inj}$	[-]	0.88	0.87	0.92		
Acceleration time	$ au_{ m acc}$	[ms]	0.48	1.89	3.54		
Number of turns	N_{turns}	[-]	21	79	41		
Average accel. gradient	G_{avg}	[MV/m]	2.32	0.96	2.84		
Energy gain per turn	ΔE	[GeV]	15.8	6.87	73.4		
Total RF voltage	$V_{ m RF}$	[GV]	22.3	9.7	103.8		
Number of cavities	$N_{ m cav}$	[-]	740	294	2308		
Ramp rate	$\dot{B}_{ m NC}$	[T/s]	3170	1907	1017		
Machine radius	R	[m]	1100	1100	4243		
Pack fraction	-	[-]	0.66	0.66	0.85		
Bend radius	$ ho_B$	[m]	730	724	3604		
Total straight length	$L_{ m str}$	[m]	2323	2359	4015		
Total NC dipole length	$L_{ m NC}$	[m]	4589	3158	17529		
Total SC dipole length	$L_{\rm SC}$	[m]	-	1394	5118		
SC dipole field	$B_{ m SC}$	[T]	-	10	10		
Average Injection dipole field	$B_{ m inj}$	[T]	0.29	1.80	0.87		
Average ejection dipole field	$B_{ m ej}$	[T]	1.80	4.31	3.65		
Injection NC dipole field	$B_{ m NC,inj}$	[T]	0.29	-1.80	-1.80		
Ejection NC dipole field	$B_{ m NC,ej}$	[T]	1.80	1.80	1.80		

 \rightarrow RF not yet optimized as *Bref* for RCS1 is

not determined

Scenario 1xSPS, 2x LHC

	Table 1: General properties of: 1xSPS, 2x LHC (normal + hybrid)					
	Parameter	\mathbf{Symbol}	Unit	RCS SPS	RCS LHC 1	RCS LHC 2
Most interesting option:	Injection energy Ejection energy	$E_{ m inj}\ E_{ m ej}$	$[{ m GeV}]$ $[{ m GeV}]$	63 386	$\frac{386}{1943}$	1943 4648
 4 TeV staged approach possible while using warm magnets 	Energy ratio Injection Lorentz factor Ejection Lorentz factor	$E_{ m ej}/E_{ m inj}$	[-] [-]	$6.1 \\ 597 \\ 3653$	$5.0 \\ 3653 \\ 18387$	2.3 18387 43993
 Extend or upgrade to 9-10 TeV collider with new magnets (HTS) or hybrid RCS as 3rd RCS 	Survival rate Acceleration time Number of turns	$\gamma_{ m ej} \ N_{ m ej}/N_{ m inj} \ au_{ m acc}$ -	[-] [-] [ms] [-]	$ \begin{array}{r} 3033 \\ 0.88 \\ 0.46 \\ 20 \end{array} $	$ \begin{array}{r} 10387 \\ 0.90 \\ 2.17 \\ 24 \end{array} $	$ \begin{array}{r} 43933 \\ 0.92 \\ 5.70 \\ 64 \end{array} $
\rightarrow Accelerator chain with 3 RCS only	Average accel. gradient Energy gain per turn Total RF voltage Number of cavities	$G_{\mathrm{avg}}\ \Delta E\ V_{\mathrm{RF}}\ N_{\mathrm{cav}}$	[MV/m] [GeV] [GV] [-]	$2.36 \\ 16.1 \\ 22.8 \\ 760$	2.39 64.9 91.8 3060	$1.58 \\ 42.3 \\ 59.8 \\ 1870$
Note: Large number of cavities in 2 nd RCS to be adjusted	Ramp rate Machine radius Pack fraction Bend radius Total straight length Total NC dipole length Total SC dipole length SC dipole field Average Injection dipole field	$egin{array}{c} B_{ m NC} \ R \ - \ ho_B \ L_{ m str} \ L_{ m NC} \ L_{ m SC} \ B_{ m SC} \ B_{ m SC} \ B_{ m inj} \end{array}$	[T/s] [m] [-] [m] [m] [m] [T] [T]	3290 1100 0.65 715 2418 4494 - - 0.29	$ \begin{array}{r} 664 \\ 4243 \\ 0.85 \\ 3600 \\ 4040 \\ 22621 \\ - \\ 0.36 \\ \end{array} $	$\begin{array}{c} 632 \\ 4243 \\ 0.85 \\ 3600 \\ 4004 \\ 15750 \\ 6907 \\ 10 \\ 1.80 \end{array}$
	Average ejection dipole field Injection NC dipole field Ejection NC dipole field	$egin{array}{c} B_{ m ej}\ B_{ m NC,inj}\ B_{ m NC,ej} \end{array}$	$\begin{bmatrix} T \\ T \end{bmatrix} \\ \begin{bmatrix} T \end{bmatrix}$	$1.80 \\ 0.29 \\ 1.80$	$1.80 \\ 0.36 \\ 1.80$	4.30 -1.80 1.80

Scenario 1xSPS, 1x LHC

Cost-wise Interesting if a 7 TeV collider is acceptable, but very large energy swing in 2nd RCS, feasibility unclear.

(Large energy swing might lead to large orbits excursions due to the hybrid magnet layout)

\rightarrow Not pursued

Table 7: General prope	rties of the	RCS chain	n: 1 SPS, 1 I	LHC	_
Parameter	\mathbf{Symbol}	Unit	RCS SPS	RCS LHC	_
Injection energy	E_{inj}	[GeV]	63	397	_
Ejection energy	$E_{\mathbf{ej}}$	[GeV]	397	3580	=> 7 TeV collider
Energy ratio	$E_{\rm ej}/E_{\rm inj}$	[-]	6.3	9.0	
Injection Lorentz factor	$\gamma_{ m inj}$	[-]	597	3756	
Ejection Lorentz factor	$\gamma_{ m ej}$	[-]	3756	33824	
Survival rate	$N_{ m ej}/N_{ m inj}$	[-]	0.91	0.80	
Acceleration time	$ au_{ m acc}$	[ms]	0.36	6.7	
Number of turns	$N_{ m turns}$	[-]	16	75	
Average accel. gradient	G_{avg}	[MV/m]	3.07	1.58	
Energy gain per turn	ΔE	[GeV]	20.9	42.4	
Total RF voltage	$V_{ m RF}$	[GV]	29.5	59.9	
Number of cavities	N_{cavities}	[-]	980	1865	Much less cavities
Ramp rate	$\dot{B}_{ m NC}$	[T/s]	4176	537	
Machine radius	R	[m]	1100	4243	
Pack fraction	-	[-]	0.67	0.85	
Bend radius	$ ho_B$	[m]	735	3600	
Total straight length	$L_{ m str}$	[m]	2291	4001	
Total NC dipole length	$L_{ m NC}$	[m]	4621	18495	
Total SC dipole length	$L_{ m SC}$	[m]	-	4161	
SC dipole field	$B_{ m SC}$	[T]	-	10	
Average Injection dipole field	$B_{ m inj}$	[T]	0.29	0.37	
Average ejection dipole field	$B_{ m ej}$	[T]	1.80	3.31	
Injection NC dipole field	$B_{ m NC,inj}$	[T]	0.29	-1.80	
Ejection NC dipole field	$B_{ m NC,ej}$	[T]	1.80	1.80	_

HTS option: Reduction of losses in high field pulsing superferric magnets

Alternative scenario for 1x SPS, 2x LHC:

- One Normal type RCS in SPS tunnel from 36GeV to 400GeV NC pulsed dipoles @1.8T aperture 30mmx50mm
- One Normal type RCS in LHC tunnel from 400GeV to about 3000GeV SC (HTS) pulsed dipoles @3T and 500T/s aperture 30mmx50mm
- One Hybrid type RCS in LHC tunnel from about 3000GeV to 5000GeV NC pulsed dipoles @1.8T and SC ff @ 10T aperture 30mmx80mm

These numbers are the first result of a brainstorming meeting last Thursday with follow-up meeting in a larger round in September or October

Credits: A. Chancé and F. Boattini

Conclusion

In summary:

Scenario	# RCS	Final Energy [TeV]	V _{RF} [V]	N _{cav}	Survival rate
2x SPS, 1x LHC	3	3.95	135.8	3342	0.7
1x SPS, 2x LHC	3	4.65	174.4	5690	0.7
1x SPS, 1x LHC	2	3.58	89.4	2845	0.7

- As input for ESPP, a CERN-based scenario next to the greenfield approach will be included
- The marked option allows for a staged approach of 4 TeV and 9-10 TeV reusing the CERN infrastructure while using three RCS only
- The fine-tuned RF and real cost analysis as next steps

Energy swings in hybrid RCS

What is the difference to the green field (GF) study???

The energy swing of a second hybrid RCS is given by

 $\frac{E_{ej}}{E_{inj}} = \frac{\frac{B_{sc}}{E_{sc,2}} + L_{sc,2} + L_{nc,2}}{2*\pi*\rho_{b,1}} \text{ for the case of NC RCS as pre-injector}$ with $L_{sc,2} + L_{nc,2} = 2*\pi*\rho_{b,2}$ and by $\frac{E_{ej}}{E_{inj}} = \frac{\frac{B_{sc}}{E_{sc,2}} + L_{sc,2} + L_{nc,2}}{2*\pi*735} = 9.0$ $\frac{E_{ej}}{E_{inj}} = \frac{\frac{B_{sc}}{E_{sc,2}} + L_{sc,2} + L_{nc,2}}{2}$ for a hybrid RCS as pre-injector

Optimization: Total Voltage Energy and voltage

A. Chancé analyzed the parameter space in which 5 TeV can be reached

12

- To reach a final energy of 5 TeV, we need a field above 2.2 T.
- To reach a survival above 70%, we need a field slope above 400 T/s.
- To have at the same time a total voltage below 200 GV, a final energy of 5 TeV, and a survival above 70%, we should aim at a value in the HTS of 2.8T and a field slope of 450-500 T/s.