

lorenzo.cortese@icfo.eu

Non-invasive microvascular monitoring technologies based on diffuse optics

Lorenzo CORTESE

ICFO – The Institute of Photonic Sciences @ Medical Optics group

ICFO Medical Optics group (PI: T. Durduran)

Positions open: https://jobs.icfo.eu

Translational research: bench-to-bedside

What is medical optics

Main questions:

- 1. Does light penetrate deep into the tissue?
- 2. Does it have any clinical relevance?
- 3. Can we build devices that are usable in clinics?

Diffuse optical near-infrared spectroscopies

Diffuse optical near-infrared spectroscopies

Spectroscopic techniques (CW-NIRS, TD-NIRS, FD-NIRS)

Durduran et al., Rep. Progr. Phys. 72, 2010

Diffuse optical near-infrared spectroscopies

Spectroscopic techniques (CW-NIRS, TD-NIRS, FD-NIRS)

Durduran et al., Rep. Progr. Phys. 72, 2010

From the lab to the clinic: examples of different applications

Adult brain monitoring (stroke, trauma, aging, sleep,...)

Exercise/sport, physiotherapy (muscle metabolism)

Infant brain (preterm babies, brain development, injury)

Cancer diagnosis & therapy follow-up

(Breast, thyroid, head and neck, prostate, ...)

Animal studies (cancer, plasmonic photothermal therapy, ...)

Intensive care (brain injury, sepsis, COVID, trauma, ...)

Brain functional studies (cognition, language, ...)

Monitoring tissue oxygenation and perfusion

How oxygen is delivered to the tissue

The oxygen trail

Thanks to: J. Mesquida

10

What we measure – Need for multimodal devices

Only NIRS: StO2 \rightarrow Integration of blood perfusion, arterial oxygenation, and the metabolic rate of the tissue.

NIRS + "speckle" (DCS/SCOS): Oxygenation + blood flow \rightarrow tissue oxygen metabolism, i.e. effective oxygen delivery and consumption

Multi-modal diffuse optical monitoring

Local tissue hemodynamic and metabolic monitoring

Durduran et al., Rep. Progr. Phys. 72, 2010

Technology:

Spectroscopy
Laser speckle

Basic quantities

Ntziachristos V. Nature Methods, 7(8):603, 2010;

Wang L V et al. Biomedical Optics: Principles & Imaging. Wiley-Interscience, 2007

Deep tissue (>1cm) absorption spectroscopy

Wavelength dependence of absorption (μ_a (λ , r)), 1/ μ_a ~ 10 cm

15

Near-infrared spectroscopy: different modalities

"Banana"	Continuous wave	Amplitude Modulated	Pulsed
 Visitation probability Transmission Re-emission 	 Amplitude only Easy/simple Inexpensive Common 	 "Frequency domain" Amplitude & phase (!) Radio freq. 	 "Time domain" Fast timing Single-photon Emerging

Durduran et al., Rep. Progr. Phys. 72, 2010

Near-infrared spectroscopy: different modalities

"Banana"	Continuous wave	Amplitude Modulated	Pulsed
 Visitation probability Transmission Re-emission 	 Amplitude only Easy/simple Inexpensive Common 	 "Frequency domain" Amplitude & phase (!) Radio freq. 	 "Time domain" Fast timing Single-photon Emerging

Durduran et al., Rep. Progr. Phys. 72, 2010

Clinical CW-NIRS based oximeters have provided mixed results.

Problematic due to the physics of the problem.

- Tissue heterogeneity is a major problem.
- Measures only oxygenation.
- Good as trend monitors.
- Well-validated in some settings.
- But a failure in others.

Clinical CW-NIRS based oximeters have provided mixed results.

Time-domain near-infrared spectroscopy (TD-NIRS)

Wavelength-dependent scattering (μ'_{s}) and absorption (μ_{a}) coefficients \rightarrow tissue constituents

$$\mu_{a}(\lambda) = \sum_{i} \varepsilon_{i}(\lambda) c_{i}$$

 $arepsilon_{i}\left(\lambda
ight)$ Molar extinction coeff. of the tissue component -i

 C_i Concentration of the tissue component -i

Time-domain near-infrared spectroscopy (TD-NIRS)

Common TD-NIRS experimental configuration & components

TD-NIRS: Diffusion theory expectations

Components' concentrations

23

Technology:

- Spectroscopy

- Laser speckle

What we measure – Need for multimodal devices

Only NIRS: StO2 \rightarrow Integration of blood perfusion, arterial oxygenation, and the metabolic rate of the tissue.

NIRS + "speckle" (DCS/SCOS): Oxygenation + blood flow \rightarrow tissue oxygen metabolism, i.e. effective oxygen delivery and consumption

What about blood flow: laser speckle fluctuations

Laser speckle fluctuations observed on a mouse brain.

What about blood flow: laser speckle fluctuations

Laser speckle fluctuations observed on a mouse brain.

Physical model \rightarrow Map of blood flow

Several methods based on speckle fluctuations

and others

Several methods based on speckle fluctuations

and others

Diffuse correlation spectroscopy (DCS)

Light scattering by turbid material: speckle pattern \rightarrow depends on scattering particle disposition

Diffuse correlation spectroscopy (DCS)

Light scattering by turbid material: speckle pattern \rightarrow depends on scattering particle disposition

When scattering particles move (i.e. red blood cells) \rightarrow speckles move

DCS: single speckle temporal fluctuation analysis \rightarrow Information on blood flow

time

Diffuse correlation spectroscopy (DCS)

Common DCS experimental configuration & components

DCS: Diffusion theory expectations

g2: intensity autocorr. function $g_2(\rho, t_0, \tau) = 1 + \beta |g_1(\rho, t_0, \tau)|^2$

g1 & g2 depend on scatterer movement (i.e. blood flow), scattering and absorption

T. Durduran PhD thesis, 2004 $_{_{33}}$

DCS: Validation against standard modalities

Table 1. All in vivo DCS validation studies published to date.ASL-MRI, arterial spin-labelledMRI; PDT, photodynamic therapy.

sample	perturbation	modality	$\begin{array}{c} \mathrm{correlation} \\ \mathrm{coefficient} \end{array}$	slope DCS/mod	references
mouse	femoral artery occlusion	laser Doppler	>0.8	0.96 - 1.07	[50]
mouse tumour	antivascular therapy	contrast-enhanced ultrasound	n.a.	agreement	[24]
mouse tumour	PDT	Doppler ultrasound	n.a.	agreement	[25]
mouse tumour	PDT	power Doppler ultrasound	n.a.	0.97	[26]
rat	hypercapnia	ASL-MRI	0.81 - 0.86	0.75	[22]
rat	hypocapnia	laser Doppler	0.94	1.3	[51]
neonatal piglet	traumatic brain injury	fluorescent microspheres	0.63	0.4	[27]
premature neonates	absolute baseline	transcranial Doppler	0.53	n.a.	[48]
term neonate	hypercapnia	ASL-MRI	0.7	0.85	[52]
premature infant	absolute baseline	transcranial Doppler	0.91	0.9	[53]
human muscle	cuff inflation/deflation	ASL-MRI	>0.77	1.5 - 1.7	[29]
adult human	pressors and hyperventilation	xenon-CT	0.73	1.1	[54]
adult human	acetazolamide	transcranial	n.a.	agreement	[46]

Mesquita, Rickson C., et al. "Direct measurement of tissue blood flow and metabolism with diffuse optics." *Phil. Trans. Roy Soc. A* (2011)

BabyLux a unique opportunity for validation

An optical neuro-monitor of cerebral oxygen metabolism and blood flow for neonatology

M. Giovannella, J. Cerebral Blood Flow & Metabolism 2020

Validation against ¹⁵O PET

Examples of clinical applications: Devices

Many applications, many different devices

Adult brain monitoring (stroke, trauma, aging, sleep,...)

Exercise/sport, physiotherapy (muscle metabolism)

Infant brain (preterm babies, brain development, injury)

Cancer diagnosis & therapy follow-up

(Breast, thyroid, head and neck, prostate, ...)

Animal studies (cancer, plasmonic photothermal therapy, ...)

Intensive care (brain injury, sepsis, COVID, trauma, ...)

Brain functional studies (cognition, language, ...)

Our flagship device: "hDOS"

- Battery operated and portable
- Remotely controllable
- DCS (blood flow monitor: BF)
 - Acquisition rate 40 Hz
- TD-NIRS (blood oxygen saturation, oxy-, deoxy- and total hemoglobin concentration)
 - Acquisition rate 1 Hz
- Integrated automatized vascular occlusion test (VOT) protocols (endothelial function)
- Blood pressure monitor and pulse oximeter

Different technology readiness levels

Examples of clinical applications: 1- Intensive care: COVID patients 2-Intracranial pressure monitoring 3- Oncology: thyroid cancer

Intensive care: COVID19 patients

<u>Commercial devices</u>: Continuous-Wave Near-Infrared Spectroscopy (CW-NIRS)

Mesquida, Caballer, Cortese et al., Critical Care 2021 Cortese et al., Sensors 2021

VASCOVID PROJECT

VASCOVID PROJECT

- EU funded
- Technology driven "next-generation"
 NIRS
- Public/private consortium
- Roadmap to CE certification and industrialization

A LOCAL MEASUREMENT FOR GLOBAL HEMODYNAMIC STATUS MONITORING

Hyperemic

A LOCAL MEASUREMENT FOR GLOBAL HEMODYNAMIC STATUS MONITORING

A LOCAL MEASUREMENT FOR GLOBAL HEMODYNAMIC STATUS MONITORING

A LOCAL MEASUREMENT FOR GLOBAL HEMODYNAMIC STATUS MONITORING

Clinical applications of VOT/NIRS in critical care

- Monitoring global hemodynamic status in resuscitation Early detection of tissue hypoperfusion Evaluation of persistence of tissue hypoperfusion
 - Mixed ICU-patients
 - Septic shock
 - Trauma/hemorrhagic shock
- Cardiovascular challenges: Weaning from mechanical ventilation
 Unmask poor cardiovascular performance
- Endothelial function

Monitoring microvascular reactivity: COVID-19, ARDS, septic and non-septic.

Creteur et al., Current Opinion in Critical Care (2008) Lipcsey et al., Annals of Intensive Care (2012) Mesquida et al., Intensive Care Medicine (2013)

Thanks to: J. Mesquida

Clinical applications of VOT/NIRS in critical care

Intensive care: COVID19 patients

<u>Commercial devices</u>: Continuous-Wave Near-Infrared Spectroscopy (CW-NIRS)

Mesquida, Caballer, Cortese et al., Critical Care 2021 Cortese et al., Sensors 2021

VASCOVID PROJECT

VASCOVID PROJECT

- EU funded
- Technology driven "next-generation"
 NIRS
- Public/private
 consortium
- Roadmap to CE
 certification and
 industrialization

Healthy Vs. COVID-19

ARDS severity Vs. endothelial impairment

Mortality & antivirals

Second stage: non COVID ICU patients

Thanks to: M. Zanoletti & M. Atif Yaqub

Examples of clinical applications:

1- Intensive care: COVID patients

2- Intracranial pressure monitoring 3- Oncology: thyroid cancer

Intracranial pressure (ICP) monitoring ICFO[®]

Intracranial pressure (ICP)

Work from: S. Tagliabue, J. Fischer, F. Maruccia, M. Torrecilla, C. Fajardo. Collaboration: M.A. Poca

Background: proposed non-invasive methods

Proposed techniques using transcranial doppler ultrasound (TCD), near-infrared spectroscopy (NIRS): not accurate enough so far

Bellner et al., Surg. Neurol. 2004 Relander et al., Neurophot. 2022

What about using diffuse correlation spectroscopy ?

Ruesch et al, JCBFM 2020 Fischer et al, Journal of Neurotrauma 2020

Diffuse correlation spectroscopy (DCS):

- Non-invasive, continuous, bedside
- Based on NIRS
- Measures blood flow index (BFI) waveforms related to the microvasculature

ICP effect on the BFI waveform

Complex relationship

BFI pulse morphology is altered depending on the ICP

Is it possible to evaluate ICP from BFI?

Pulsatile microvascular BFI mapped to ICP by machine learning (ML)

Methods: ICP prediction

- Recurrent neural network (RNN) with BFI as input
- Modelling of sequential data without feature engineering
- Training and validation based on a 50% hold out method

Fischer et al, Journal of Neurotrauma 2020

Results: ICP predition

Predicted VS measured ICP on TBI (N=15)

- Accuracy ±4 mmHg; bias ~0 mmHg
- Similar results obtained for BEH cohort

Can this be improved?

Examples of clinical applications:

1- Intensive care: COVID patients
2- Intracranial pressure monitoring
3- Oncology: thyroid cancer

Thyroid cancer screening: clinical needs

Thyroid cancer is a major and growing health challenge. Chances of survival and full recovery heavily depend on an early and fast diagnosis and an effective treatment.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 688303.

www.luca-project.eu www.photonics21.org

Thanks to: P. Fernández Esteberena, M. Zanoletti, G. Lo Presti

Thyroid cancer screening: H2020 LUCA project

Goal: To develop a **low-cost tool** for the **screening of thyroid nodules** for malignant cancers, combining ultrasound and diffuse optics

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 688303.

www.luca-project.eu www.photonics21.org

Thanks to: P. Fernández Esteberena, M. Zanoletti, G. Lo Presti

Thyroid cancer screening: multi-modal device

Follow standard clinical workflow of US examination but include an optical measurement (DCS-TRS) to evaluate physiological values of thyroid nodules.

TRS: 8-wavelength system

-Wavelengths: 635, 670, 730, 830, 852, 915, 980, 1040 nm

DCS: 16 detection channels system

Thyroid cancer screening: preliminary results

55

8

Subject's left

Measured TIRADS 4 nodules

StO₂ holds as most promising classification parameter

Ultrasound: TPR=10-87%, FPR=4-42%

P. Fernández et. al, Biomedical Optics Express 2024

To conclude

Translational research: bench-to-bedside

It takes loooo(.....)ng time to mature (some) technologies

.....

It takes loooo(.....)ng time to mature (some) technologies

It takes loooo(.....)ng time to mature (some) technologies

15 years ~1992 2009 2011 2013 2017 2024 Lab Size 2004 +1500 people +300 people measured in measured in arm VASCOVID in-vivo SPIN-OFFs tests brain in ICU But not a single clinical ion +100 papers 2 papers decision has ever been 📑 Physical Models taken on the basis of 2024 DCS! TRL 7 Wearables 23) 20 years later many publications, groups, 500 people +300 people **Sleep Apnea Clinical translation Proof of Concept** measured in arm Stenosis easured in Stroke in the Healthy approaches. in ICU brain **Congenital Heart Premature Birth** Brain 100 papers 2 papers 2010 2004 2014 2024 E E Constanting **APPLICATIONS**

It takes loooo(.....)ng time to mature (some) technologies

Educational & fun series to learn about other works

Full playlist on ICFO youtube channel

https://youtube.com/playlist?list=PLLnA8B3ZULyHIUC0_eDGefWO_pdQbfkdW
