

Coordin

Partne

Partner

Partner

François Morellet Random Distribution of 40,000 Squares using the Odd and Even Numbers of a Telephone Directory 1960

In-Silico generation of random bit streams

the value of unpredictability

	Organization	Organization	Massimo	Cacci Contact	a Contact person email
	full name . UNI∨	short name / PFC number	l'Insubria	person name	dom Power s.r.l.
ator	Università	UNINS/	University	Massimo	massimo.caccia@uninsubria.it
	degli Studi dell'Insubria	1999855343000	o.caccia@	r Aquio r	mpower.eu
er 2	AGH-	AGH/	University	Wojciech	kucewicz@agh.edu.pl
	University of Science and Technology	999844573	6	ewicz	
er 3	Nuclear	NI/904737916	SME	drea	abba@nuclearinstruments.eu
	Instruments			Abba	
er 4	Quantum	QFA/	SME	Marcello	marcello.esposito@outlook.it
	Financial AI	BAInhova	Training C	Esposito	on Quantum tech
		C	ERN, Janu	lary 22 ^r	rd 2025

what we do:

0

what we do:

]

w h a t d o : w e

Random Power is developing a platform of Silicon based, patent protected, "QUANTUM coin flippers", generating virtually endless streams of random bits

d o : h a t W e

Unpredictability to preserve the predictability of our clockwork world

* There is definitely a hype about Random bit streams, not only for cryptograhy & authentication but also for gaming, virtual reality, Monte Carlo simulations, Privacy Preservation Procedures and Identity management

to learn more, watch this BBC report:

The search for the random numbers that run our lives

6 July 2024

Share <

Birth of the Modern Worldl

and exploiting unpredictable natural phenomena based on classical physics

Generating REAL, certified and robust randomness is far from being trivial, both using algorithmic solutions

Generating REAL, certified and *robust* randomness is far from being trivial, both using algorithmic solutions and exploiting unpredictable natural phenomena based on classical physics

▶ 1951, John Von Neumann [J. Res. Nat. Bur. Stand. Appl. Math. Series 3, 36-38 (1951)]

Various Techniques Used in Connection With Random Digits

Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.

and exploiting unpredictable natural phenomena based on classical physics

Generating REAL, certified and robust randomness is far from being trivial, both using algorithmic solutions

and exploiting unpredictable natural phenomena based on classical physics

a 2013 NSA scandal unveiled by the NYT:

HOME PAGE	то	DAY'S PAPER	VIDEO	MOST PO	PULAR	U.S. E	dition 🔻				
Ehe Neu	1]o	rk Eimes					U.S				
WORLD	U.S.	N.Y. / REGIO	N BUS	SINESS	TECHN	OLOGY	SCIENCE	HEALTH	SPORTS	OPINION	ART
POLITIC	S E	DUCATION	TEXAS								
		Secr	et D	OCUI	men that th	ts R e N.S.A	eveal	N.S.A	A. Car	npaign	n A

Excerpt from 2013 Intelligence Budget Request

This excerpt from the N.S.A.'s 2013 budget request outlines the ways in which the agency circumvents the encryption protection of everyday Internet communications. The Sigint Enabling Project involves industry relationships, clandestine changes to commercial software to weaken encryption, and lobbying for encryption standards it can crack.

Generating REAL, certified and robust randomness is far from being trivial, both using algorithmic solutions

	Go
ARTS STYLE TRAVEL JOBS F	REAL ESTATE AUTOS

Against Encryption

ing a battery of methods that n changes to cryptographic n break. Related Article »

Bullrun Briefing Sheet

and exploiting unpredictable natural phenomena based on classical physics

Generating REAL, certified and robust randomness is far from being trivial, both using algorithmic solutions

problem: h e

and exploiting unpredictable natural phenomena based on classical physics

Generating REAL, certified and robust randomness is far from being trivial, both using algorithmic solutions

a 2021 finding on weakness in Randomness generation for IoT:

Share

f

There's a crack in the foundation of Internet of Things (IoT) security, one that affects **<u>35 billion devices worldwide</u>**. Basically, every IoT device with a hardware random number generator (RNG) contains a serious vulnerability whereby it fails to properly generate random numbers, which undermines security for any upstream use.

and exploiting unpredictable natural phenomena based on classical physics

Generating REAL, certified and robust randomness is far from being trivial, both using algorithmic solutions

and exploiting unpredictable natural phenomena based on classical physics

a 2023 article on FORBES:

Challenges Of Zero-Knowledge Proof Technology For Compliance

Alexander Ray Forbes Councils Member Forbes Business Council COUNCIL POST | Membership (fee-based)

Problem 2: Vulnerability To Random Number Generator Attacks

Generating REAL, certified and robust randomness is far from being trivial, both using algorithmic solutions

problem: he

and exploiting unpredictable natural phenomena based on classical physics

a 2020 paper by the U.S. Census Bureau:

Randomness Concerns When Deploying Differential Privacy

Simson L. Garfinkel US Census Bureau Suitland, MD simson.l.garfinkel@census.gov

true data. Thus, while the data for the Decennial Census can be stored in a few tens of gigabytes, protecting its output statistics will require the DAS to use roughly 90TB of random data.

a 2023 article on FORBES:

Challenges Of Zero-Knowledge Proof Technology For Compliance

Alexander Ray Forbes Councils Member Forbes Business Council COUNCIL POST | Membership (fee-based)

Problem 2: Vulnerability To Random Number Generator Attacks

Generating REAL, certified and robust randomness is far from being trivial, both using algorithmic solutions

Philip Leclerc US Census Bureau Suitland, MD philip.leclerc@census.gov

▶ the optimal solution:

RANDOM NUMBER GENERATION BY OBSERVING UNPREDICTABLE QUANTUM PHENOMENA

where unpredictability is secured by the very same laws of Nature.

b the optimal solution:

RANDOM NUMBER GENERATION BY OBSERVING UNPREDICTABLE QUANTUM PHENOMENA

where unpredictability is secured by the very same laws of Nature.

\blacktriangleright the optimal solution:

RANDOM NUMBER GENERATION BY OBSERVING UNPREDICTABLE QUANTUM PHENOMENA

where unpredictability is secured by the very same laws of Nature.

*** The very first example:** exploiting the **unpredictability of Radioactive Decays**

the sequence of detected decays can be used to generate random bits with different recipes:

- Check the parity of the number of pulses in a time window
- pre-define the time window in a way that is equally like to have or not to have a single pulse

b the optimal solution:

RANDOM NUMBER GENERATION BY OBSERVING UNPREDICTABLE QUANTUM PHENOMENA

where unpredictability is secured by the very same laws of Nature.

\blacktriangleright the optimal solution:

RANDOM NUMBER GENERATION BY OBSERVING UNPREDICTABLE QUANTUM PHENOMENA

where unpredictability is secured by the very same laws of Nature.

Inspired by Forrest Gump, we say:

***** RADIOACTIVE IS AS RADIOACTIVE DOES

RINDOM POVER is to replace a radioactive source The idea behind with something safer, more handy, cost effective, simple, robust, providing sequences of pulses mimicking radioactive decays.

b t h e R a n d o m P o w e r w a y : A THREE STEP DANCE:

The name of the game is **QUANTUM TUNNELING**:

*** Electrons** and quantum entities in general are not like a they rather appear as a ...

when they bounce against a [potential] barrier, they can occasionally go through in an unpredictable way.

The name of the game is **QUANTUM TUNNELING**:

*** Electrons** and quantum entities in general are not like a they rather appear as a ...

when they bounce against a [potential] barrier, they can occasionally go through in an unpredictable way.

* When this is happening, the "ghost" electron enters a region of high electric field, generating a current pulse by impact ionisation

The name of the game is **QUANTUM TUNNELING**:

*** Electrons** and quantum entities in general are not like a they rather appear as a ...

when they bounce against a [potential] barrier, they can occasionally go through in an unpredictable way.

* When this is happening, the "ghost" electron enters a region of high electric field, generating a current pulse by impact ionisation

The name of the game is **QUANTUM TUNNELING**:

*** Electrons** and quantum entities in general are not like a they rather appear as a ...

when they bounce against a [potential] barrier, they can occasionally go through in an unpredictable way.

* When this is happening, the "ghost" electron enters a region of high electric field, generating a current pulse by impact ionisation

but

Courtesy of Ivan Rech, Politecnico di Milano_ [50 µm cell size]

The name of the game is **QUANTUM TUNNELING**:

*** Electrons** and quantum entities in general are not like a rather appear as a

when they bounce against a [potential] barrier, they can occasionally go through in an unpredictable way.

* When this is happening, the "ghost" electron enters a region of high electric field, generating a **current pulse** by impact ionisation

* By time stamping the pulses the analysing the time series, we turn unpredictable occurrence of the pulses into **bits**

and we embody the principle in a platform of Silicon-based devices

but they

This is the PATENTED essence of

- Italian Patent granted in Sept. 2020 _
- EU patent granted in 2022
- Japanese patent granted in 2024
- in the examination phase in China, Korea and U.S. (since April 2021)

Ministero dello Sviluppo Economico

Direzione generale per la tutela della proprietà industriale Ufficio Italiano Brevetti e Marchi

ATTESTATO DI BREVETTO PER INVENZIONE INDUSTRIALE

Il presente brevetto viene concesso per l'invenzione oggetto della domanda:

This is the **PATENTED** essence of

KIND0M PO/FR

where the key issues are:

endogenous in-silico seeding of the pulses self-amplification of the seeds in excess of a factor 1 000 000, making pulse tagging robust bit extraction through a non parametric local analysis of the time series of pulses lacktrianglesister to the neuronal sector of the sector of no need of post-processing to correct left-over bias maximum bit/occurrence rate = 40% [2 random bits every 5 pulses] current rate at the 5-10 Mbps rate for every mm² of Silicon sensor potential to embed the generator into an ASIC [Application Specific Integrated Circuit]

a. Our principle is actually a lesson from the past. This effect was known since the early days of the Silicon technology development:

1. INTRODUCTION

MOST reverse biased p-n junctions in silicon have their avalanche breakdown caused by microplasma effects. Microplasmas are small regions within the junction,¹ where a local disturbance of the electrical field is believed to reduce the breakdown voltage to a value below the breakdown voltage of the surrounding uniform junction.²⁻⁵ As voltage is increased from low values microplasma breakdown is generally characterized by random "on-off" current fluctuations so long as currents remain below a critical value (40 to 120 μ A).⁶⁻⁸

from paper

PHYSICAL REVIEW

VOLUME 94, NUMBER 4

MAY 15, 1954

Avalanche Breakdown in Silicon

K. G. MCKAY Bell Telephone Laboratories, Murray Hill, New Jersey (Received December 23, 1953)

JOURNAL OF APPLIED PHYSICS

VOLUME 35, NUMBER 5

2

FIG. 5. Avalanche current as a function of time at low temperatures. The group character of the avalanche pulses is obvious.

Model for the Electrical Behavior of a Microplasma^{*}

ROLAND H. HAITZ[†]

Shockley Laboratory, Clevite Corporation Semiconductor Division, Palo Alto, California (Received 5 November 1963)

The complex current fluctuations observed in connection with microplasma breakdown can be explained by a simple model containing two constants: extrapolated breakdown voltage V_b and series resistance R_s ; and two continuous probability functions: turnoff probability per unit time $p_{10}(I)$ as a function of pulse current I and turn-on probability per unit time p_{01} . Experimental methods allowing an accurate measurement of these four quantities are described. The new concept of an extrapolated breakdown voltage V_b is discussed based on two independent measurements: one of secondary multiplication and the other of instantaneous current, both as a function of voltage. Within the experimental accuracy of 20 mV both methods extrapolated to one and the same breakdown voltage. The turnoff probability $p_{10}(I)$ is determined by a new combination of experimental techniques to cover the current range from 5 to 70 μ A with a variation of 11 decades for $p_{10}(I)$. The observation of a narrow turnoff interval is explained quantitatively.

F APPLIED PHYSICS VOLUME 36, NUMBER 10

Mechanisms Contributing to the Noise Pulse Rate of Avalanche Diodes^{*}

ROLAND H. HAITZ

Shockley Research Laboratory, Semiconductor Division of Clevite Corporation, \$ Palo Alto, California (Received 16 November 1964)

<u>Rindom</u> Polver

The phenomenology is by now quite well known [even if large uncertainties are still there, requiring] somehow a "cook & look" approach]

Fig. 8. Representation of the different sources of primary dark events and their location in the SPAD structure.

after A. Gola, C. Piemonte, NIM A926 (2019) 2-15

Key issues:

* the Pulse Rate is O(1 KHz)/cell, 50 µm pitch (it may be higher) for SPAD arrays in CMOS technology)

- * provided the nature of the "Dark Pulses", we have a significant dependence on Temperature
- * forget-me-not: the Over-voltage is affecting the triggering probability

Thermal generation of carriers by states in the bang-gap

(Shockley-Read-Hall statistics), where trapping and de-trapping is increased by the high electric field in the junction. The **Generation rate** can be written as:

$$\vec{F} = \frac{n_i}{2 \cdot \cosh\left(\frac{E_0 - E_t}{kT}\right)} N_t \sigma v_{th} = \frac{n_i}{\tau_{g0}}$$

 $E_0 =$ Fermi level E_t = trapping level n_i = intrinsic carrier concentration N_t = trapping concentration σ = trapping cross section v_{th} = thermal velocity

a few notes:

b. The idea flashed as a genuine act of serendipity, while studying the properties of Dark Counts in Silicon Photomultipliers (SiPM)

SiPM may be seen as a collection of binary cells, p-n junctions operated beyond the breakdown voltage [SPAD], fired when a photon in absorbed

[in principle, a NATIVE DIGITAL DEVICE]

b. The idea flashed as a genuine act of serendipity, while studying the properties of Dark Counts in Silicon Photomultipliers (SiPM)

histogram of the response to a high statistics of low intensity light pulses

b. The idea flashed as a genuine act of serendipity, while studying the properties of Dark Counts in Silicon Photomultipliers (SiPM)

Dependence of the Dark Count Rate on the Overvoltage (wrt Breakdown) in different HAMAMATSU SiPM

state - of - play:

Three elements of the platform have been developed and will be ready for the market by Q1 2025:

3.5 cm

A single generator board, for qualification and the educational market

:

A 64 generator computer on a board, for **Data Centers** (e.g. simulations & Al training)

8 CM

A full custom ASIC (a chip!) for

IoT, Authentication, gaming&gambling

:

POWER

THE SINGLE GENERATOR BOARD

Main output of the

Dimensions [cm ²]	8x3.5
No. generators	1 array
Raw bit stream:	100 kbps
NIST DRBG output	NA
(SP800-90 A,B,C)	
Control:	Xilinx Spartan 7
I/0:	USB or bits-on-pin
Power supply:	through the USB (5V, 0.5A)
Power consumption:	<2.5W
Encryption	No
of the bit stream:	
Specific Features:	 Firmware implemented Real-Time samity checks (MONOBIT and RUNS) Auxiliary post-processing through a SHA256 function
State of development:	 Completed Full qualification of 2 Tb through the NIST and TESTU01 protocols Single board control through a GUI or mini-farm control implementing also the NIST

	•								fina	lAnalysisRe	port_PART2.tx	kt (
RES	ULTS	FOR	THE	UNI	FORM	 ITY (DF P-	-VAL	JES /	AND THE PR	OPORTION OF	PASSING SEQUENCES
Tes	genei tFW8_	rato _4Bi	r is tNoRe	<td>sers, pe_10</td> <td>/luca GB_Pa</td> <td>a/Doc art2</td> <td>cumer bin></td> <td>nts/I</td> <td>Random_Pow</td> <td>er/ProgramAn</td> <td>dTechnical/ATTRACT_Eu_Board_Fwa</td>	sers, pe_10	/luca GB_Pa	a/Doc art2	cumer bin>	nts/I	Random_Pow	er/ProgramAn	dTechnical/ATTRACT_Eu_Board_Fwa
C1	C2	С3	C4	C5	C6	С7	С8	С9	C10	P-VALUE	PROPORTION	STATISTICAL TEST
100	110	95	93	90	90	114	101	98	109	0.682823	986/1000	Frequency
97	102	94	103	107	97	105	106	102	87	0.941144	993/1000	BlockFrequency
95	95	101	100	113	106	93	100	89	108	0.842937	989/1000	CumulativeSums
94	112	117	90	93	91	89	96	123	95	0.125927	987/1000	CumulativeSums
100	93	91	112	93	112	99	110	101	89	0.647530	992/1000	Runs
105	91	96	80	121	99	85	100	107	116	0.092597	989/1000	LongestRun
100	104	89	110	97	88	126	84	99	103	0.148653	992/1000	Rank
95	109	103	113	85	94	90	100	106	105	0.630872	995/1000	FFT
104	98	91	89	104	90	110	104	115	95	0.632955	987/1000	NonOverlappingTemplate
111	93	112	88	96	95	100	101	106	98	0.798139	981/1000	NonOverlappingTemplate
111	100	93	94	101	109	93	87	117	95	0.514124	986/1000	NonOverlappingTemplate
86	94	119	101	107	98	93	103	98	101	0.626709	998/1000	NonOverlappingTemplate
93	112	93	103	91	89	94	99	115	111	0.498313	989/1000	NonOverlappingTemplate
84	106	101	109	86	119	111	96	94	94	0.249284	988/1000	NonOverlappingTemplate
114	92	98	96	105	105	101	100	83	106	0.682823	992/1000	NonOverlappingTemplate
117	87	98	101	100	106	91	94	105	101	0.697257	991/1000	NonOverlappingTemplate
90	93	97	107	99	89	100	116	108	101	0.689019	994/1000	NonOverlappingTemplate
99	108	98	99	116	104	98	85	96	97	0.743915	991/1000	NonOverlappingTemplate
88	93	103	101	112	94	111	99	100	99	0.829047	988/1000	NonOverlappingTemplate
96	97	103	103	106	108	114	97	93	83	0.651693	987/1000	NonOverlappingTemplate
108	95	97	109	84	94	101	101	91	120	0.388990	988/1000	NonOverlappingTemplate

series of tests on non-overlapping templates

80	98	115	100	98	115	107	91	83	113	0.106877	993/1000	OverlappingTemplate
86	116	121	101	91	87	96	101	87	114	0.084037	990/1000	Universal
97	90	107	116	110	95	103	93	92	97	0.668321	987/1000	ApproximateEntropy
70	62	54	60	55	66	60	63	77	65	0.668486	626/632	RandomExcursions
62	69	58	70	58	61	56	71	63	64	0.909311	626/632	RandomExcursions
60	53	59	62	76	72	60	59	66	65	0.681642	620/632	RandomExcursions
70	64	83	45	62	69	70	65	51	53	0.040275	622/632	RandomExcursions
66	69	69	73	73	73	38	49	52	70	0.009611	627/632	RandomExcursions
65	52	67	82	68	54	51	63	72	58	0.136536	627/632	RandomExcursions
61	55	60	72	66	71	67	56	55	69	0.711017	626/632	RandomExcursions
47	61	62	58	71	63	71	61	68	70	0.553450	625/632	RandomExcursions
60	57	66	62	58	61	67	67	73	61	0.941564	624/632	RandomExcursionsVariant
60	70	43	60	64	58	58	88	64	67	0.030676	622/632	RandomExcursionsVariant
66	58	51	65	51	61	72	72	71	65	0.447593	624/632	RandomExcursionsVariant
63	67	59	46	67	60	68	70	73	59	0.483876	623/632	RandomExcursionsVariant
61	67	58	69	63	74	48	60	66	66	0.615645	624/632	RandomExcursionsVariant
75	62	63	58	63	55	66	54	71	65	0.717488	624/632	RandomExcursionsVariant
68	63	66	54	57	65	63	67	56	73	0.827336	620/632	RandomExcursionsVariant
75	54	64	57	65	64	56	62	64	71	0.733547	623/632	RandomExcursionsVariant
76	68	70	56	55	50	66	52	64	75	0.176734	624/632	RandomExcursionsVariant
89	63	57	59	59	55	58	68	63	61	0.134074	624/632	RandomExcursionsVariant
67	68	61	57	60	69	66	63	63	58	0.979797	624/632	RandomExcursionsVariant
65	64	62	71	58	68	67	53	60	64	0.917568	626/632	RandomExcursionsVariant
71	58	56	62	75	62	67	64	53	64	0.701268	626/632	RandomExcursionsVariant
64	71	49	62	61	69	69	59	59	69	0.694743	626/632	RandomExcursionsVariant
61	65	54	59	63	63	64	76	62	65	0.879806	626/632	RandomExcursionsVariant
58	55	57	67	65	66	54	66	76	68	0.642077	629/632	RandomExcursionsVariant
46	64	65	61	64	61	81	59	75	56	0.150772	624/632	RandomExcursionsVariant
50	56	65	67	74	67	51	63	73	66	0.353061	629/632	RandomExcursionsVariant
106	107	87	107	94	109	100	83	92	115	0.352107	989/1000	Serial
105	100	94	98	96	95	96	101	95	120	0.790621	991/1000	Serial
105	97	89	101	96	106	92	112	105	97	0.875539	991/1000	LinearComplexity

The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is approximately = 980 for a sample size = 1000 binary sequences.

The minimum pass rate for the random excursion (variant) test is approximately = 618 for a sample size = 632 binary sequences.

For further guidelines construct a probability table using the MAPLE program provided in the addendum section of the documentation. A proto-randomness farm based on 10 boards have been collecting about 1.5 Tb, qualified through the NIST and TESTU01 suites.

expected.

in a bit string:

bits in a string

- **Results show that the stream looks extremely "white", essentially** with no failures on the raw data beside what can be statistically
- A SHA256 vetted conditioning function firmware implemented
- Two tests have been implemented in firmware to guarantee realtime sanity checks:
- * MONOBIT: essentially testing the asymmetries between 0's and 1's
- * **RUNS**: testing the statistics of the number of sequences of identical

THE 64 GENERATORS BOARD

ATTRACT

Goal of the

Phase 2 project (May 2022-Fall.2023)

Dimensions [cm²]11.1x31.2x2.0No. generators64 arraysRaw bit stream:32 MbpsNIST DRBG output (SP800-90 A,B,C)1 GbpsControl:Xilinx KRIA K26 SOMI/0:Eth or PCI-ExpressPower supply:12V, 8APower consumption:20WEncryption of the bit stream:Yes (AES-256)Specific Features:• Firmware implemented Real-Time sanity checks (MONOBIT, RUNS, Adaptive proportion test, Repetition Count Test)• Auxiliary post-processing through a SHA256 function• Interface through the Trusted Execution Environment• Temperature control though a Peltier cooler • FIPS-140-3 compliant by design> v1.0 delivered in July 2023, qualified ▷ v2.0, product grade, delivered in September 2024, being qualified ▷ software architecture under development		
No. generators 64 arrays Raw bit stream: 32 Mbps NIST DRBG output (SP800-90 A,B,C) 1 Gbps Control: Xilinx KRIA K26 SOM I/0: Eth or PCI-Express Power supply: 12V, 8A Power consumption: 20W Encryption of the bit stream: Yes (AES-256) Specific Features: • Firmware implemented Real-Time sanity checks (MONOBIT, RUNS, Adaptive proportion test, Repetition Count Test) • Auxiliary post-processing through a SHA256 function • Interface through the Trusted Execution Environment • State of development: ▶ v1.0 delivered in July 2023, qualified ▶ v2.0, product grade, delivered in September 2024, being qualified ▶ software architecture under development	Dimensions [cm ²]	11.1x31.2x2.0
Raw bit stream:32 MbpsNIST DRBG output (SP800-90 A,B,C)1 GbpsControl:Xilinx KRIA K26 SOMI/O:Eth or PCI-ExpressPower supply:20WPower consumption:20WEncryption of the bit stream:20WSpecific Features:• Firmware implemented Real-Time sanity checks (MONOBIT, RUNS, Adaptive proportion test, Repetition Count Test)• Auxiliary post-processing through a SHA256 function• Interface through the Trusted Execution Environment• Temperature control though a Peltier cooler • FIPS-140-3 compliant by design• V1.0 delivered in July 2023, qualified ▷ v2.0, product grade, delivered in September 2024, being qualified ▷ software architecture under development	No. generators	64 arrays
NIST DRBG output (SP800-90 A,B,C)1 GbpsControl: I/O:Xilinx KRIA K26 SOM Eth or PCI-ExpressPower supply: Power consumption: Encryption of the bit stream:20WSpecific Features:• Firmware implemented Real-Time sanity checks (MONOBIT, RUNS, Adaptive proportion test, Repetition Count Test) • Auxiliary post-processing through a SHA256 function • Interface through the Trusted Execution Environment • Temperature control though a Peltier cooler • FIPS-140-3 compliant by designState of development:▶ v1.0 delivered in July 2023, qualified ▶ v2.0, product grade, delivered in September 2024, being qualified ▶ software architecture under development	Raw bit stream:	32 Mbps
(SP800-90 A,B,C)Control:Xilinx KRIA K26 SOMI/0:Eth or PCI-ExpressPower supply:12V, 8APower consumption:20WEncryption of the bit stream:Yes (AES-256)Specific Features:• Firmware implemented Real-Time sanity checks (MONOBIT, RUNS, Adaptive proportion test, Repetition Count Test)• Auxiliary post-processing through a SHA256 function• Interface through the Trusted Execution Environment• State of development:● v1.0 delivered in July 2023, qualified ▶ v2.0, product grade, delivered in September 2024, being qualified ▶ software architecture under development	NIST DRBG output	1 Gbps
Control:Xilinx KRIA K26 SOMI/0:Eth or PCI-ExpressPower supply:12V, 8APower consumption:20WEncryption of the bit stream:Yes (AES-256)Specific Features:• Firmware implemented Real-Time sanity checks (MONOBIT, RUNS, Adaptive proportion test, Repetition Count Test)• Auxiliary post-processing through a SHA256 function• Interface through the Trusted Execution EnvironmentState of development:● v1.0 delivered in July 2023, qualified ▷ v2.0, product grade, delivered in September 2024, being qualified ▷ software architecture under development	(SP800-90 A,B,C)	
I/0: Eth or PCI-Express Power supply: 12V, 8A Power consumption: 20W Encryption Yes (AES-256) of the bit stream: • Firmware implemented Real-Time sanity checks (MONOBIT, RUNS, Adaptive proportion test, Repetition Count Test) • Auxiliary post-processing through a SHA256 function • Auxiliary post-processing through a SHA256 function • Interface through the Trusted Execution Environment • Temperature control though a Peltier cooler • FIPS-140-3 compliant by design ▶ v1.0 delivered in July 2023, qualified ▶ v2.0, product grade, delivered in September 2024, being qualified ▶ software architecture under development	Control:	Xilinx KRIA K26 SOM
Power supply: 12V, 8A Power consumption: 20W Encryption Yes (AES-256) of the bit stream: • Firmware implemented Real-Time sanity checks (MONOBIT, RUNS, Adaptive proportion test, Repetition Count Test) • Auxiliary post-processing through a SHA256 function • Interface through the Trusted Execution Environment • Temperature control though a Peltier cooler • FIPS-140-3 compliant by design State of development: ● v1.0 delivered in July 2023, qualified ● v2.0, product grade, delivered in September 2024, being qualified ● software architecture under development	I/O:	Eth or PCI-Express
Power consumption:20WEncryption of the bit stream:Yes (AES-256)Specific Features:• Firmware implemented Real-Time sanity checks (MONOBIT, RUNS, Adaptive proportion test, Repetition Count Test)• Auxiliary post-processing through a SHA256 function• Interface through the Trusted Execution Environment• State of development:• V1.0 delivered in July 2023, qualified local software architecture under development	Power supply:	12V, 8A
Encryption of the bit stream:Yes (AES-256)Specific Features:Firmware implemented Real-Time sanity checks (MONOBIT, RUNS, Adaptive proportion test, Repetition Count Test)Auxiliary post-processing through a SHA256 functionInterface through the Trusted Execution EnvironmentState of development:V1.0 delivered in July 2023, qualified v2.0, product grade, delivered in September 2024, being qualified ifiedSoftware architecture under developmentSoftware architecture under development	Power consumption:	20W
of the bit stream:Specific Features:• Firmware implemented Real-Time sanity checks (MONOBIT, RUNS, Adaptive proportion test, Repetition Count Test)• Auxiliary post-processing through a SHA256 function• Interface through the Trusted Execution Environment• Temperature control though a Peltier cooler • FIPS-140-3 compliant by designState of development:• v1.0 delivered in July 2023, qualified • v2.0, product grade, delivered in September 2024, being qualified • software architecture under development	Encryption	Yes (AES-256)
Specific Features: Firmware implemented Real-Time sanity checks (MONOBIT, RUNS, Adaptive proportion test, Repetition Count Test) Auxiliary post-processing through a SHA256 function Interface through the Trusted Execution Environment Temperature control though a Peltier cooler FIPS-140-3 compliant by design V1.0 delivered in July 2023, qualified v2.0, product grade, delivered in September 2024, being qualified software architecture under development software architecture under development	of the bit stream:	
State of development: > v1.0 delivered in July 2023, qualified > v2.0, product grade, delivered in September 2024, being qualified > software architecture under development	Specific Features:	Firmware implemented Real-Time sanity checks (MONOBIT_RUNS_Adaptive proportion
• Auxiliary post-processing through a SHA256 function • Interface through the Trusted Execution Environment • Temperature control though a Peltier cooler • FIPS-140-3 compliant by design • v1.0 delivered in July 2023, qualified • v2.0, product grade, delivered in September 2024, being qualified • software architecture under development		test. Repetition Count Test)
 State of development: Interface through the Trusted Execution Environment Temperature control though a Peltier cooler FIPS-140-3 compliant by design v1.0 delivered in July 2023, qualified v2.0, product grade, delivered in September 2024, being qualified software architecture under development 		 Auxiliary post-processing through a SHA256 function
State of development: • Temperature control though a Peltier cooler • FIPS-140-3 compliant by design • V1.0 delivered in July 2023, qualified • v2.0, product grade, delivered in September 2024, being qualified • software architecture under development		 Interface through the Trusted Execution Environment
State of development: ▶ v1.0 delivered in July 2023, qualified ▶ v2.0, product grade, delivered in September 2024, being qualified ▶ software architecture under development		 Temperature control though a Peltier cooler FIPS-140-3 compliant by design
 v2.0, product grade, delivered in September 2024, being qualified software architecture under development 	State of development:	v1.0 delivered in July 2023, qualified
September 2024, being qualified Software architecture under development		v2.0, product grade, delivered in
<pre>>software architecture under development</pre>		September 2024, being qualified
Software architecture under development		September 2027, senig quanted
development		software architecture under
		development

(TRNG)

NIST Special Publication 800-90B

Recommendation for the Entropy
Sources Used for Random Bit
Generation

Recommendation for Random Number Generation Using Deterministic Random Bit Generators

How to design and test entropy sources to be **Approved DRBG mechanisms** used to feed Deterministc Random Bit **Generators (DRBG)**

* pre-requisites for entering the programs eventually leading to the FIPS-140-3 certification * impacting on the design of both the ASIC, the multiple generator board and its embodiment in a "system"

NIST Special Publication 800-90A Revision 1

(Second Draft) NIST Special Publication 800-90C

Recommendation for Random Bit Generator (RBG) Constructions

Construction of RBG from A+B

Entropy consumer

A Deterministic Random Bit Generator (DRBG), as of the NIST recipe

***** Essentially, the True Random Bits generated by Random Power are used to seed a NIST approved Pseudo Random **Bit Generator**

* when reseeding occurs after EVERY iteration of the Deterministic machine, you obtain the highest level of security, namely **Prediction Resistance***

* QUOTING NIST: Prediction resistance means that a compromise of the DRBG internal state has no effect on the security of future DRBG outputs.

(TRNG)

Why this is done? in principle, the majority of the randomness tests qualify the stream against modelled pitfalls but you cannot exclude a priori unknown deviations.

"Universal tests" have been proposed, connected to "compression" algorithms but even Maurer's test, the most widely known, in its practical implementation can possibly have a reduced diagnostics power:

J. Cryptology (1992) 5: 89–105

Journal of Cryptology © 1992 International Association for Cryptologic Research

A Universal Statistical Test for Random Bit Generators*

Ueli M. Maurer

Institute for Theoretical Computer Science, ETH Zürich, CH-8092 Zürich, Switzerland

Communicated by Rainer A. Rueppel

Received 2 April 1990 and revised 23 June 1991

Abstract. A new statistical test for random bit generators is presented which, in contrast to presently used statistical tests, is universal in the sense that it can detect any significant deviation of a device's output statistics from the statistics of a truly random bit source when the device can be modeled as an ergodic stationary source with finite memory but arbitrary (unknown) state transition probabilities. The test parameter is closely related to the device's per-bit entropy which is shown to be the correct quality measure for a secret-key source in a cryptographic application. The test hence measures the cryptographic badness of a device's possible defect. The test is easy to implement and very fast and thus well suited for practical applications. A sample program listing is provided.

AN ACCURATE EVALUATION OF MAURER'S UNIVERSAL TEST

Jean-Sébastien Coron	David Naccache
Ecole Normale Supérieure	Gemplus Card International
45 rue d'Ulm	34 rue Guynemer
Paris, F-75230, France	Issy-les-Moulineaux, F-92447, France
coron@clipper.ens.fr	$\verb+naccache@compuserve.com$

Abstract. Maurer's universal test is a very common randomness test, capable of detecting a wide gamut of statistical defects. The algorithm is simple (a few Java code lines), flexible (a variety of parameter combinations can be chosen by the tester) and fast.

Although the test is based on sound probabilistic grounds, one of its crucial parts uses the heuristic approximation :

$$c(L,K) \cong 0.7 - \frac{0.8}{L} + \left(1.6 + \frac{12.8}{L}\right) K^{-4/L}$$

In this work we compute the precise value of c(L, K) and show that the inaccuracy due to the heuristic estimate can make the test 2.67 times more permissive than what is theoretically admitted.

Moreover, we establish a new asymptotic relation between the test parameter and the source's entropy.

(TRNG)

cannot exclude a priori unknown deviations.

On the other hand, if you can mathematically prove the strength of an algorithm, you can feel relieved. Maybe:

Security Analysis of NIST CTR-DRBG

Viet Tung Hoang¹ and Yaobin Shen²

¹ Dept. of Computer Science, Florida State University ² Dept. of Computer Science & Engineering, Shanghai Jiao Tong University, China

Abstract. We study the security of CTR-DRBG, one of NIST's recommended Pseudorandom Number Generator (PRNG) designs. Recently, Woodage and Shumow (Eurocrypt' 19), and then Cohney et al. (S&P' 20) point out some potential vulnerabilities in both NIST specification and common implementations of CTR-DRBG. While these researchers do suggest counter-measures, the security of the patched CTR-DRBG is still questionable. Our work fills this gap, proving that CTR-DRBG satisfies the robustness notion of Dodis et al. (CCS'13), the standard security goal for PRNGs.

Abstract. We investigate the security properties of the three deterministic random bit generator (DRBG) mechanisms in the NIST SP 800-90A standard [2]. This standard received a considerable amount of negative attention, due to the controversy surrounding the now retracted DualEC-DRBG, which was included in earlier versions. Perhaps because of the attention paid to the DualEC, the other algorithms in the standard have received surprisingly patchy analysis to date, despite widespread deployment. This paper addresses a number of these gaps in analysis, with a particular focus on HASH-DRBG and HMAC-DRBG. We uncover a mix of positive and less positive results. On the positive side, we prove (with a caveat) the robustness [16] of HASH-DRBG and HMAC-DRBG in the random oracle model (ROM). Regarding the caveat, we show that if an optional input is omitted, then – contrary to claims in the standard — HMAC-DRBG does not even achieve the (weaker) property of forward security. We also conduct a more informal and practice-oriented exploration of flexibility in implementation choices permitted by the standard. Specifically, we argue that these DRBGs have the property that partial state leakage may lead security to break down in unexpected ways. We highlight implementation choices allowed by the overly flexible standard that exacerbate both the likelihood, and impact, of such attacks. While our attacks are theoretical, an analysis of two open source implementations of CTR-DRBG shows that potentially problematic implementation choices are made in the real world.

Why this is done? in principle, the majority of the randomness tests qualify the stream against modelled pitfalls but you

An Analysis of the NIST SP 800-90A Standard

Joanne Woodage¹, Dan Shumow²

¹Royal Holloway, University of London ² Microsoft Research

EMVCo Position Statement on

The Alleged backdoor in a NIST Random Number Generator (Dual EC DRBG)

January 2014

This paper provides the EMVCo position regarding an alleged backdoor in the NIST Dual Elliptic Curve Deterministic Random Bit Generator (Dual EC-DRBG).

Background

Recent allegations arising from Snowden-NSA disclosures are in fact a re-surfacing of publicly aired concerns dating back to 2007 regarding a random number generator being standardised by NIST, ANSI and ISO. This random number generator uses elliptic curve cryptography to produce an output sequence of pseudo random bits. However researchers showed that anyone knowing the inverse of one of the ECC parameters of the generator and also knowing just 32 bytes of the generator's output will be able to determine the secret internal state of the generator and thus be able to predict all the generator's output bits.

Thus the security of the Dual EC-DRBG rests on the secrecy of the inverse of the ECC parameter. NIST, ANSI and ISO Standards specify the use of a parameter originating from the NSA and the allegations are that the NSA knows its inverse. Note that in the NIST, ANSI and ISO Standards the Dual EC-DRBG is just one of multiple ways of generating random bits.

EMV-SWG-NC62r3

THE ASIC:

On-chip secure eFuses for keystorage

Authentication at 3 levels, starting by a Silicon embedded primary key and a Key Derivation Function

High-resolution sub-nanosecond-level time to digital converters with near-zero dead time. Logic for the patented random bit generation

Dimensions [cm ²]	1x1
No. generators	1 array
Raw bit stream:	2-8 Mbps
NIST DRBG output	32 Mbps
(SP800-90 A,B,C)	
Control:	SPI at 24 MHz
I/O:	SPI at 24 MHz
Power supply:	5V, 1.8V
Power consumption:	100 mW
Encryption	Yes (AES-256)
of the bit stream:	

Specific Features:	 On Silicon implementation of the NIST Real-Time sanity checks (Adaptive Proportion Test and Repetition Count Test) On Silicon implementation of the NIST DRBG protocol Package: QFN100 FIPS 140-3 compliancy by design; CAVP (Cryptographic Algorithm Validation Program) grapted
	Program granted

Out-of-the fab in June 2024, result of an engineering run
 Full qualification close to completion

THE ASIC:

It embodies also: ***** two different TDC architectures * a two stage mechanism to implement "screamers identification" and a procedure for the rate stabilisation:

32x

32 -cell digital array of quantum entropy generator based on direct and trap assisted quantum tunneling

state - of - play:

Beside hardware:

available on ArXiv at <u>https://arxiv.org/abs/2409.05543</u>

On-line anomaly detection and qualification of

C. Caratozzolo, V. Rossi, K. Witek, A. Trombetta, and M. Caccia

2024 IEEE International Conference on Cyber Security and Resilience

how did we do it? Essentially, Thanks to the EC

Our consortium:

leading party

AGH

Organization Organization Contact

Contact person email

18 man-years dedicated to the project

HISTORY & TEAM: pre-incorporation

2016

commissioned and qualified;

completed (October)

launch at the CyberSecurity week in Le Hague (October)

submission of the **ATTRACT** Phase 1 proposal (October)

> Approval & kick-off of the ATTRACT Phase 1 proposal (May) design, commissioning and production of the single generator board; 2018 2020 2019 A demo board is designed, **End** of the **ATTRACT Phase 1** project (October)

- Italian patent filing

- **Full characterisation** of the single generator board
- **winner** of the **Start-Cup competition** (regional level; 20 kEUR)
- winner of two special prizes wy investors at PNI, start-up competition at RNDOM POWER **winner** of two special prizes by

where d i d get **O W** W e

HISTORY & TEAM: post-incorporat

- > approval of the ATTRACT Phase 2 proposal (Ja (2 **MEUR**)
- kick-off of the ATTRACT Phase 2 (May)
- proto-farm commissioned
- implementation of the TESTU01 suite, complementation the NIST test (1.5 Tb qualified)
- winner of the Falling Walls venture int'l comp (November)

2022

real-time sanity check implemented

v1.0

commissioning of v1.0 started (July); qualification completed in December

▶ first implementation of real-time sanity checks

2021

company establishment (June)

investment (200 kEUR) by LifTT, our VC (June)

Submission of the **ATTRACT**

we	а	r	е	?	28
ion (20)21)				
anuary)					Chip delivery (Q2)
					 Chip qualification (Q4) 64x board product grade qualification (Q3)
nenting					 v1.0 of the FIPS compliant sw architecture for the rage board FIPS 140-3 certification started
petition					 Business plan v2.0 End of the ATTRACT Phase 2 (fall; Extended by n Execution of the pext investment round
2023	3				

2024

design of the multi-gen board completed (April)

chip submission in mid-September

<u>Rindom</u> Polver

multi-

low!

RIND0M PNNFR

www.randompower.eu

Established in June 2021

This project has received funding from the ATTRACT project funded by the EC under Grant Agreement 777222

2020-10 Winner - ICT

2020-11 Winner of 2 "special prizes"

2021-06 PoC investment by LifTT, a VC located in Torino (ITALY)

2022-11 winner @the Falling Walls venture competition for curious people: here & and there

I AM A FALLING WALLS WINNER

2024-03 Random Power goes to the most important trade fair on IoT technologies, hosted at the SECO booth.

