

Quantum Sensing & Metrology: The next frontier

Jan-Theodoor (JT) Janssen

Chief Scientist, National Physical Laboratory (NPL)

United Kingdom

The measure of everything

• Why measure?

If you can't measure, you can't make it better.

"Arguably, the ability to measure physical properties accurately has tremendous survival value that gives humans an adaptive evolutionary advantage" Lord Kelvin (1883)

What is 'Metrology'?

- Metrology is "<u>the science of measurement</u>, embracing both experimental and theoretical determinations at any level of uncertainty in any field of science and technology."
- Almost all of science, industry and commerce involves making and interpreting measurement – why is metrology special?

The Proclamation Regarding Weights and Measures, 1556 by Ford Madox Brown (1889)

1. le Litre (Pener Le Pinte) 2. le Gramme (Pour & Livre) 5. le Metre (Pour l'Anne) 4 IAre (Pour & Taise) 5. le Francizion nor Livre Tournois) 6. le Stere (Inn & Denne Voie de Bou)

Woodcut dated 1800 illustrating the new decimal units which became the legal norm across all France in 1800

Metrology's main activities

- The <u>definition</u> of internationally accepted units of measurement, e.g. the kilogram
- The <u>realisation</u> of units of measurement by scientific methods

- The establishment of <u>traceability</u> chains by disseminating and documenting the value and accuracy of a measurement
- Traceability implies the calculation of an associated <u>measurement</u> <u>uncertainty</u>

stable

kg

Confidence in measurement

Coming up:

- Quantum mechanics what is it?
- Quantum technology today
- What made quantum possible?
- Quantum technology tomorrow
 - Magnetometry
 - Gravimetry
 - Quantum imaging

Classical mechanics

Gravity, light & calculus

Isaac Newton 1642-1726

$$F = \frac{GM_1M_2}{r^2}$$

F = gm

Classical mechanics

Johannes Kepler

Three laws of planetary motion

Joseph-Louis Lagrange

Differential equations, Lagrangian mechanics etc.

Leonhard Euler

Calculus of variations, analytical number theory etc.

Gottfried Leibnitz

Differential & integral calculus

Michael Faraday

Electromagnetism

"There is **nothing new to be discovered in physics** now. All that remains is more and more precise measurement." Lord Kelvin (1900)

Unexplained observations

- Blackbody radiation
- Photoelectric effect
- Energy spectrum of Hydrogen

Quantum mechanics founders

Planck

Schrodinger

Dirac

The strange world of quantum is highly counter-intuitive!

Young's Double Slit Experiment: Bullets

Young's Double Slit Experiment: Waves

Young's Double Slit Experiment: Waves

Young's Double Slit Experiment: Waves

Young's Double Slit Experiment: Electrons

Young's Double Slit Experiment: Electrons

Quantum Summary

- Things can be in two states at the same time
- Things are described by probabilities
- The act of measurement has a profound effect
- Things can interact non-locally
- It's impossible to know all things exactly

Yet, quantum mechanics is the most successful theory which describes nature with unpresented precision

Quantum Applications today

Loads of modern technology is underpinned by quantum technology

NMR

Semiconductors


```
Lasers
```


Nuclear power

Atomic clocks

Nanotechnology

- Semiconductors
- Lithography
- Microscopy

Bottom-up atom by atom

Cryogenics

Superconductive Levitation

LHC Magnets

Modern Cryogenics

Plane = Atom

Balls = Photons

Atom trapping

• If you can **cool** atoms with lasers, you can **trap** them...

Quantum Electrical Metrology and the SI

The quantum Hall effect

Discovered in 1980 by Klaus von Klitzing Nobel Prize in Physics in 1985

Josephson effect

The SI Base Units Pre-2019

The New International System of Units

Quantum Revolution #2

Flux quantisation in a superconducting ring **NPL**

 $=\frac{h}{2e}$ Φ

The SQUID

<u>Superconducting QUantum Interference Device</u>

An interferometer for superconducting current

 $\delta B \sim 1-10 \ fT /Hz^{1/2}$

Field produced by the brain	Earth Magnet field	Fridge magnet	Loudspeaker magnet	Neutron Star
~1 pT	30 microT	5 mT	1 T	~MT
0.00000000001	0.000030	0.005	1.0	1,000,000

Quantum Magneto Encephalography

Epilepsy: 60M people world-wide

Dementia: 1% GDP

Schizophrenia: 1% of population

Trauma: 100,000 / year in the UK

Courtesy CTF MEG systems

NanoSQUIDs for Quantum Sensing

NanoSQUIDs for single photon detection

NanoSQUIDs for spin detection

NEMS resonators readout with nanoSQUID

Big Science

Nasa Image

Dark Matter search

Nasa Image

Gravity Probe B mission (testing Einstein's theories)

Atomic magnetometry

- Non-Destructive Testing (NDT)
- Inertial sensing for Positioning, Navigation and Timing
- New forms of computing
- OPM-MEG

<u>Optically Pumped Magnetometer</u> <u>Magnetoencephalography</u>

Courtesy: Niall Holmes, University of Nottingham; Lisa Gilligan-Lee, University of Nottingham)

NPL

Gravimetry

- Measuring gravity very important!
- Key to geology, hydrology, climate science, satellite flight etc.

Traditional ways of measuring gravity

Courtesy Microg LaCoste

Atomic Gravimeters (from apples to atoms)

2T

Time

Birmingham Mobile Atom Gravimeter

Atomic clocks gravimeters?

- General Relativity → gravitational time dilation
 Time flows slower in higher gravitational potentials
- Earth's core 2.5 yrs *younger* than crust!
- Atomic clocks incredibly sensitive
 Time 'speedup' detected across 1 mm cloud of atoms!
- Use clocks as sensors for missing 'dark' matter?

 \bigcirc

100ns In 43 days

22 Bishopsgate London

Self-Calibrating standards

Doppler Broadening Thermometry

Active Ring Resonator Thermometry

(a) *d*=368nm ⁺Ω⁺ 2μm H

NIST Chip-scale clock

- Quantum sensing better than classical, but a bit "weird"!
- Next quantum revolution is here
- Quantum technology will continue to shape our lives!

National Physical Laboratory

npl.co.uk

Images included in this presentation are courtesy of NPL unless stated otherwise

© NPL Management Limited, 2023