

HYBRID PIXEL DETECTORS – THE TIMEPIX ASIC FAMILY

M. Campbell¹, J. Alozy, R. Ballabriga, P. Christodoulou², E.H.M. Heijne², T. Hofmann, <u>X. Llopart</u>, and L. Tlustos² CERN, PH Department 1211 Geneva 23 Switzerland

> ¹ Honorary Professor at Glasgow University ² also with IEAP, Prague

Hybrid Silicon Pixel Detectors

- Noise-hit free images possible (high ratio of threshold/noise)
- Standard CMOS can be used (follow industry)
- Sensor material can be changed (Si, GaAs, CdTe..)
- Semiconductor sensor can be replaced by a gas gain grid or MCP

Outline

- The Medipix and Timepix family timeline
- Timepix
 - Schools
 - Dosimetry for manned space flight
- Timepix2
- Timepix3
 - Single layer particle tracking
 - Velocity map imaging
 - Visible photon imaging and quantum applications
- Timepix4
 - 4DPhoton
- LA-Picopix
- Summary and Conclusion

M	Medipix2 (1999 ->)	Medipix3 (2005 ->)	Medipix4 (2016 ->)
	Albert-Ludwig Universität Freiburg, Germany	Albert-Ludwig Universität Freiburg, Germany	CEA, Paris, France
CERN	CEA, Paris, France	AMOLF, Amsterdam, The Netherlands	CERN, Geneva, Switzerland
	CERN, Geneva, Switzerland	Brazilian Light Source, Campinas, Brazil	DESY-Hamburg, Germany
	Czech Academy of Sciences, Prague, Czechia	CEA, Paris, France	Diamond Light Source, England, UK
	ESRF, Grenoble, France	CERN, Geneva, Switzerland	IEAP, Czech Technical University, Prague, Czeciah
	IEAP, Czech Technical University, Prague, Czech Republic	DESY-Hamburg, Germany	IFAE, Barcelona, Spain
	IFAE, Barcelona, Spain	Diamond Light Source, England, UK	JINR, Dubna, Russian Federation
	Mid Sweden University, Sundsvall, Sweden	ESRF, Grenoble, France	NIKHEF, Amsterdam, The Netherlands
	MRC-LMB Cambridge, England, UK	IEAP, Czech Technical University, Prague, Czech Republic	University of California, Berkeley, USA
	NIKHEF, Amsterdam, The Netherlands	KIT/ANKA, Forschungszentrum Karlsruhe, Germany	University of Canterbury, Christchurch, New Zealand
	University of California, Berkeley, USA	Mid Sweden University, Sundsvall, Sweden	University of Geneva, Switzerland
	Universität Erlangen-Nurnberg, Erlangen, German	NIKHEF, Amsterdam, The Netherlands	University of Glasgow, Scotland, UK
	University of Glasgow, Scotland, UK	Univesridad de los Andes, Bogota, Columbia	University of Houston, USA
	University of Houston, USA	University of Bonn, Germany	University of Maastricht, The Netherlands
	University and INFN Section of Cagliari, Italy	University of California, Berkeley, USA	University of Oxford, England, UK
	University and INFN Section of Pisa, Italy	University of Canterbury, Christchurch, New Zealand	INFN, Italy
	University and INFN Section of Napoli, Italy	Universität Erlangen-Nurnberg, Erlangen, German	Chinese Spallation Neutron Source, Dongguan City, China
		University of Glasgow, Scotland, UK	Brazilian Light Source, Campinas, Brazil
		University of Houston, USA	Philippines Nuclear Research Institute, Manila, Philippines
		University of Leiden, The Netherlands	Czech Academy of Sciences, Prague, Czech Republic
		Technical University of Munich, Germany	Univeristy of Tennessee, Knoxville, USA
		VTT Information Technology, Espoo, Finland	

Commercial Partners

COLLABORATION NAME	Medipix2			Medipix3		Medipix4	
ASICS	Medipix2	Timepix	Timepix2	Medipix3	Timepix3	Medipix4	Timepix4
ADVACAM s.r.o., CZ	Х	Х	х	Х	Х		Х
Amsterdam Scientific Instruments, NL	Х	Х		Х	Х		Х
Kromek, UK	Х	Х	Х		Х		
Malvern-Panalytical, NL	Х	Х		Х			
MARS Bio Imaging, New Zealand				Х			
PITEC, Brazil			Х	Х			Х
Quantum Detectors, UK				Х			Х
Sequent Logic, USA							Х
Sydor Technologies, USA							Х
Thermo Fischer Scientific, CZ							Х
X-ray Imaging Europe, Germany	Х	Х					
X-spectrum, Germany				Х			X
				X = commer	cial licensee	X = R and	D licensee

Motivation for Medipix/Timepix Developments

- Hybrid pixel detectors for the LHC are designed to do one thing extremely well
 - Tag each traversing particle to one bunch crossing (25ns)
 - On-chip (or on-pixel) hit buffering and selection (only triggered events are read out)
 - Tolerate extreme radiation environment
- The Medipix/Timepix chips were intended to use the same technology for other applications
 - Not so Application Specific Integrated Circuit
- The Medipix family aims primarily at spectroscopic X-ray imaging in medicine
- The Timepix family is better suited to detecting single particles
- The experience gathered has led to innovative solutions for the LHC machine and experiments (e.g. VELOpix development)

The Medipix and Timepix ASICs - Timeline

Collaboration	2003	2006	2013	2014	2017	2018	2020	2021	2025?
Medipix2	Medipix2	Timepix				Timepix2			
Medipix3			Medipix3	Timepix3				Medipix4	
Medipix4							Timepix4 🗸	/	

- Medipix chips aim at energy sensitive photon counting and typically use frame-based readout
- Timepix chips are more oriented towards single particle detection

The Medipix and Timepix ASICs - Timeline

Collaboration	2003	2006	2013	2014	2017	2018	2020	2021	2025?
Medipix2	Medipix2	Timepix				Timepix2			
Medipix3			Medipix3	Timepix3				Medipix4	
Medipix4							Timepix4		
LHCb					VELOpix				LA- Picopix

• Medipix chips aim at energy sensitive photon counting and typically use frame-based readout

- Timepix chips are more oriented towards single particle detection
- This talk will focus on the recent Timepix chips

Timepix readout chips - single particle detection

	Timepix	Timepix2	Timepix3	Timepix4
Tech. node (nm)	250	130	130	65
Year	2005	2018	2014	2019
Pixel size (mm)	55	55	55	55
# pixels (x × y)	256 x 256	256 x 256	256 x 256	448 x 512
Time bin (resolution)	10ns	10ns	1.5ns	200ps
Readout architecture	Frame based (sequential R/W)	Frame based (sequential or continuous R/W)	Data driven or Frame based (sequential R/W)	Data driven or Frame-base (sequential or continuous R/W)
Number of sides for tiling	3	3	3	4

Timepix miniaturised readout

Timepix for schools

Advacam s.r.o., Prague

Timepix Demo

Timepix chip – 60s exposures

Near sea level

34 000 feet

TIMEPIX@school project

https://cernandsocietyfoundation.cern/projects/timepix

- Several successful pilot projects in the UK, Spain and other countries, have demonstrated that TIMEPIX stimulates and enhances the interest of high school students (especially girls) in STEM subjects
- It also improves the motivation of science teachers.
- Capturing the interest of high school students in STEM is vital for future recruitment for the microelectronics industry
- The CERN & Society Foundation is raising funds to make the technology more widely available in schools
 14

Image of the astronaut Chris Cassidy working near the Timepix USB on the International Space Station (Courtesy of NASA, photo ref. no. iss036e006175)

Timepix - 4s exposures

University of Houston, IEAP Prague, NASA

REM Dose Rate Data (µG/min)

Timepix dose rates measured in 2014 on ISS

University of Houston, IEAP Prague, NASA

Timepix on Artemis 1

- Artemis 1 launch Wednesday Nov 16 2022
- Carrying 4 Timepix detectors from the Medipix2 collaboration at CERN on board to measure radiation
- Part of a larger program at NASA using Timepix based instruments for radiation measurement
- 3 devices part of HERA radiation dose monitoring hardware. Successful operation from just after launch to just before splashdown
- 4th device no board Biosentinel cubesat (now at > 50Mkm from earth

Timepix-based flight hardware

Name	Date Flown	Mission	Location	Objective	Vehicle	Number TPX
REM	2012	ISS	LEO	Demo	ISS	5
BIRD	2014	Orion EFT-1	LEO/MEO	Demo/Science	Orion	2
REM2	2018	ISS	LEO	Ops	ISS	7
МРТ	2017	ISS	LEO	Science	ISS	2
Biosentinel	2020	ISS	LEO	Science	ISS	1
ISS-HERA	2018	ISS	LEO	Demo	ISS	3
AHOSS	2020	ISS	LEO	Demo/Ops	ISS	3
LETS(1)	2023	Astrobotic 1	Lunar Surface	Science	Peregrine	1
LETS(2)	2024/5	Berensheet 2*	Lunar Surface	Science	Berensheet 2	1
HERA	2022	Artemis 1	Lunar Orbit	Ops	Orion	3
Biosentinel	2022	Artemis 1	Solar Orbit	Science	Cubesat	1
HERA	2023	Polaris Dawn	MEO	Science	Crew Dragon	1
HERA	2024	Artemis 2	Lunar Orbit	Ops	Orion	6
HERA	2025	Artemis 3	Lunar Orbit	Ops	Orion	6
ARES	2025	Artemis 3	Lunar Surface	Ops	Starship	>=1
LEIA	~~2024	CLPS Lander	Lunar Surface	Science	TBS Lander	1
ARES	2026	Artemis	Lunar Orbit	Ops	Lunar Gateway	2

*Evaluating mission possibility

7 missions flown, 4 missions next six months, 6 missions manifested, > 23 Timepix in Space to date

19

S. George (NASA) 10 Years of Timepix in Space – How CERN Detectors are supporting Human Spaceflight https://indico.cern.ch/event/1218130/

Timepix readout chips - single particle detection

	Timepix	Timepix2	Timepix3	Timepix4
Tech. node (nm)	250	130	130	65
Year	2005	2018	2014	2019
Pixel size (mm)	55	55	55	55
# pixels (x × y)	256 x 256	256 x 256	256 x 256	448 x 512
Time bin (resolution)	10ns	10ns	1.5ns	200ps
Readout architecture	Frame based (sequential R/W)	Frame based (sequential or continuous R/W)	Data driven or Frame based (sequential R/W)	Data driven or Frame-base (sequential or continuous R/W)
Number of sides for tiling	3	3	3	4

Timepix2 Specs

CMOS node	130nm
Pixel Array	256 x 256
Pixel pitch	55µm
Charge collection	e ⁻ , h+
Pixel functionality	TOT (Energy) and TOA (Arrival time)
Preamp Gain (linear/adaptive)	~25mV/ke ⁻ (19mv/ke ⁻)
ENC	~60e ⁻
FE Linearity (linear/adaptive)	Up to 20ke ⁻ (Up to 250ke ⁻)
TOT linearity (linear/adaptive)	Up to 300ke ⁻ (Up to 950ke ⁻)
TOA bin size	10ns
Minimum detectable charge	~750e ⁻ → 2.7 KeV (Si Sensor)
Power consumption	450mW/cm ² (nominal 100MHz clocks)
Readout	Frame-based (serial or parallel) @100MHz

Other new features (compared with Timepix):

- Improved shutter functionality
- ROI readout
- Possibility to power off unused pixels
- etc

Timepix2 modes of operation

Main features and modes:

- Frame based readout only (256x256 pixels, 55 um pitch).
- 4 multipurpose counters per pixel: 2x 10 bits + 2x 4 bits
- Three modalities: Event counting, Energy (ToT) or Time of Arrival (ToA).
- Continuous measurement modes with zero dead time: One counter is used for measurement while the other is being readout then their roles swap

Mode Name	Description	1 st Counter	2 nd Counter
ТоТ10/ТоА18	Simultaneous ToT and 1 st hit ToA (with sequential read/write)	10-bit ToT {CounterA}	18-bit ToA {CounterD, CounterC, CounterB}
ТоТ14/ТоА14	 1) 1st hit or integral ToT 2) Overflow (wraparound) of ToA counter 	14-bit ToT {CounterD, CounterA}	14-bit ToA {CounterC, CounterB}
ContToT10/ Event4	Continuous read/write ToT Mode options: 1) 1 st hit or integral ToT (programmable) 2) Supplementary 4-bit eventing counting (readout optional)	10-bit ToT {CounterA} 4-bit #Events {CounterD}	10-bit ToT {CounterB} 4-bit #Events {CounterC}
ContToT14	Continuous read/write ToT Mode option: 1 st hit or integral ToT (programmable)	14-bit ToT {CounterD, CounterA}	14-bit ToT {CounterC, CounterB}
ContToA10		10-bit ToA {CounterA}	10-bit ToA {CounterB}
ContToA14	Continuous read/write 1 st hit ToA		14-bit ToA {CounterC, CounterB}
ContEvent10		10-bit #Events {CounterA}	10-bit #Events {CounterB}
ContEvent14	Continuous read/write event counting		14-bit #Events {CounterC, CounterB}

Sequential R/W - ToT (first hit or total) and ToA (first hit)

ToT (fotal)hit) Note shutter does not truncate last hit It also ignores hits which are active at start

Continuous R/W – ToT and event counting

ShutterCounterSel			
DiscOut			
ToTCounterClk0			
ToTCounterClk1			
EventCounterClk0	 		
EventCounterClk1			

Other modes in Continuous R/W

- First hit ToT or total ToT
- Also can ToT ONLY or event counting ONLY

Pixel Frontend

When the transistor is active, the feedback capacitance is ~125fF (Dimensions transistor 1/10)

M.Manghisoni et al., "Dynamic Compression of the Signal in a Charge Sensitive Amplifier: From Concept to Design", IEEE TNS, vol. 62, pp. 2318-2326, Oct. 2015 25

Pixel Frontend

Timepix2 500 µm Si sensor – improved equalisation

ThI scans 2 Cu+Fe+Zr+Mo+Ti Means Mean: 6.38942 Mean: 15.7403 6 Sigma: 0.323382 10 12 14 igma: 0.330931 140 140 Mean: 16.0748 Sigma: 0.350227 120 120 •Ti •Fe •Cu •Zr 100 100 Mean: 4.85193 •Mo 80 Sigma 80 Cnt 60 40 40 20 20 10 12 14 16 FWHM Resolution Sigma Energy XRF [keV] [keV] [keV] [%] 0.751 4.501 16.7% Ti 0.319 Fe 0.323 0.762 6.398 11.9% 0.320 0.753 8.04 9.4% Cu 0.331 0.779 15.744 5.0% Zr Мо 0.350 0.825 17.441 4.7%

After (equalization using targets)

- Timepix2 is available for use
- It is well adapted to applications which use frame-based readout
- It is being incorporated in a number of space applications
- It can be bought commercially from Advacam Sro
- It will gradually replace Timepix in educational kits

Timepix readout chips - single particle detection

	Timepix	Timepix2	Timepix3	Timepix4
Tech. node (nm)	250	130	130	65
Year	2005	2018	2014	2019
Pixel size (mm)	55	55	55	55
# pixels (x × y)	256 x 256	256 x 256	256 x 256	448 x 512
Time bin (resolution)	10ns	10ns	1.5ns	200ps
Readout architecture	Frame based (sequential R/W)	Frame based (sequential or continuous R/W)	Data driven or Frame based (sequential R/W)	Data driven or Frame-base (sequential or continuous R/W)
Number of sides for tiling	3	3	3	4

Timepix3 Specs

CMOS node	130nm
Pixel Array	256 x 256
Pixel pitch	55µm
Charge collection	e ⁻ , h+
Pixel functionality	TOT (Energy) and TOA (Arrival time)
Preamp Gain	~47mV/ke ⁻
ENC	~60e ⁻
FE Linearity	Up to 12ke ⁻
TOT linearity (resolution)	Up to 200ke⁻(<5%)
TOA resolution*	Up to 1.6ns
Time-walk	<20ns
Minimum detectable charge	~500e ⁻ \rightarrow 2 KeV (Si Sensor)
Power power (1.5V)	700 mW/cm ²
Maximum hit rate	80Mhits/sec (in data driven)
Readout	Data driven (44-bits/hit @ 5Gbps)

* Thanks to V. Gromov, et al. Nikhef, C. Brezina et al., Bonn

Timepix3 readout - Trigger-less and event driven

- Achievable count rate:
 - uniformly distributed events \rightarrow ~43 Mhits/s/cm^2 @5.12Gbps
- Full matrix readout: ~800 µs @5.12Gbps

Pixel Operation in TOA & TOT

Timepix3 miniaturised readout

Advacam s.r.o., Prague

3D rendering of traversing particle with delta electron

Slide courtesy of B. Bergmann, S. Pospisil, IEAP, CTU, Prague

Velocity Map Imaging - Timepix3CAM

Imaging Time of Flight Mass Spectrometry - setup

DOI: (10.1021/acs.analchem.2c04480)

Imaging Time of Flight Mass Spectrometry - results

DOI: (10.1021/acs.analchem.2c04480)

One example of quantum application of TPIX3CAM

Robert N Wolf et al., "Efficient site-resolved imaging and spin-state detection in dynamic two-dimensional ion crystals", arXiv:2303.10801v4 [quant-ph] 16 Sep 2024

One example of quantum application of TPIX3CAM

Figure 5. Individual spin-state detection after global spinflip excitations. (a) A crystal of about 120 ions is shown at different millimeter wave (mmw) pulse durations of t = 0, $t \approx 39 \,\mu\text{s}$ and $t \approx 57 \,\mu\text{s}$, as indicated by the arrows. (b) Bright-state fraction, $P_{\uparrow} = N_B/N$, determined from individual images (dots) by counting the total number of ions, N, via the neural network, and the number of bright ions, N_B , via the time-binned maximum likelihood (ML) method. The red dashed line is a sinusoidal fit to the data. The blue dashed line is a fit to the photon counts (not shown) obtained simultaneously with a photomultiplier tube (PMT). The crystal's

Robert N Wolf et al., "Efficient site-resolved imaging and spin-state detection in dynamic two-dimensional ion crystals", arXiv:2303.10801v4 [quant-ph] 16 Sep 2024

E

Publications in quantum applications of TPIX3CAM

AMSTERDAM SOUNTIFIC INSTRUMENTS		Home About Products - Resources - Comm	unity 👻
All 3DEI	VMI And Mass Spectrometry Quantum Science FLIM/PLIM U-EELS UEM 4D-STEM LEEM EBSD XRD Time Projection Chamber Dosimetry Software Time Projection Chamber VMI & Mass Spec	XRM SAXS XPCS Neutron Science Timepix4 Miscellaneou trometry VMI And Mass Spectrometry	S
	Search	٩	
Category	Publication	Author	Link
Quantum Science	Fast quantum ghost imaging with a single-photon-sensitive time-stamping camera	Alex Mavian, Yang Xu, Cheng Li, Robert Boyd, Optica Publishing (2025)	Ø
Quantum Science	Biphoton state reconstruction via phase retrieval methods	N.Dehghan et al. Optica Publishing (2024)	Ø
Quantum Science	Engineering quantum states from a spatially structured quantum eraser.	Carlo Schiano et al. Sci. Adv (2024)	Ø
Quantum Science	Background resilient quantitative phase microscopy using entangled photons	Yingwen Zhang et al. arXiv (2024)	Ø
Quantum Science	Quantum light-field microscopy for volumetric imaging with extreme depth of field	Yingwen Zhang et al. Phys. Rev. Applied (2024)	Ø
Quantum Science	Individual-Ion Addressing and Readout in a Penning Trap	Brian J. McMahon, et al. arXiv (2024)	Ø
Quantum Science	Intensified Tpx3Cam, a fast data-driven optical camera with nanosecond timing resolution for single photon detection in quantum applications	A. Nomerotski et al. IOP Science (2023)	Ø
Quantum Science	Characterisation of a single photon event camera for quantum imaging	V. Vidyapin et al. Nature (2023)	Ø
Quantum Science	Snapshot hyperspectral imaging with quantum correlated photons	Y.Zhang et al. Optica (2023)	Ø
Quantum Science	Study of afterpulsing in optical image intensifiers	R Mahon et al. arXiv (2023)	Ø
Quantum Science	Spectral characterization of a SPDC source with a fast broadband spectrometer	B Farella et al. arXiv (2023)	Ø
Quantum Science	Experimental Work Towards an Individually-Addressed-Ion Penning Trap Quantum Simulator	B McMahon et al. Bulletin of the American Physical Society (2023)	Ø
Quantum Science	Full spatial characterization of entangled structured photons	X Gao et al. arXiv (2023)	Ø
Quantum Science	Full spatial characterization of entangled structured photons	X Gao et al. arXiv (2023)	Ø

https://amscins.com/resources/publications/?category=quantum-science

Timepix readout chips - single particle detection

	Timepix	Timepix2	Timepix3	Timepix4
Tech. node (nm)	250	130	130	65
Year	2005	2018	2014	2019
Pixel size (mm)	55	55	55	55
# pixels (x × y)	256 x 256	256 x 256	256 x 256	448 x 512
Time bin (resolution)	10ns	10ns	1.5ns	200ps
Readout architecture	Frame based (sequential R/W)	Frame based (sequential or continuous R/W)	Data driven or Frame based (sequential R/W)	Data driven or Frame-base (sequential or continuous R/W)
Number of sides for tiling	3	3	3	4

Timepix3 → Timepix4

			Timepix3 (2013)	Timepix4 (2018/19)
Tech	nology		130nm – 8 metal	65nm – 10 metal
Pixe	el Size		55 x 55 μm	55 x 55 µm
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448
Sensitive area			1.98 cm ²	6.94 cm ²
Mode		Mode	TOT	and TOA
	Data driven	Event Packet	48-bit	64-bit
lodes	(Tracking)	Max rate	<0.43 Mhits/mm ² /s	<3.58 Mhits/mm ² /s
		Max pix rate	1.3kHz/pixel	10.6kHz/pixel
out N		Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)
Read	Frame based (Imaging)	Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr) CRW (8-bit / 16-bit) Up to 44 KHz frame @8b
		Max count rate	82 Ghits/cm ² /s	~800 Ghits/cm ² /s
TOT energy resolution		tion	< 2KeV	< 1Kev
Time resolution (bin size)		n size)	1.56ns	~200ps
Readout bandwidth		h	≤5.12Gb (8 x SLVS@640 Mbps)	≤163 Gbps (16 x 10.24 Gbps)
Target global minimum threshold		m threshold	<500 e ⁻	<500 e ⁻

42

Timepix4 Pixel Schematic

Pixel Operation in TOA & TOT [DD]

Full digital double column DLL

[448 dDLL: 224 Top Matrix and 224 Bottom Matrix]

iWoRID 2018 X. Llopart et al 2019 JINST 14 C01024

- Timepix3 ~100mW/cm² @40MHz clock with ~1.2ns skew
- Dynamic digital power consumption is distributed across the clock period

Timepix4 Readout Modes : Data-Driven

- Zero-suppressed continuous data-driven
 - Output bandwidth from 40 Mbps (2.6 Hz/pixel) to 160 Gbps (10.8 KHz/pixel)
 - Uses Aurora 64b/66b standard encoding communication protocol
- 4 External Sync Inputs to synchronize/align external signals with data

	SPEC: F	acket specifica	tions ToA/ToT		
Name	Width	MSB	LSB	Bits	
Тор	1	63	63	[63:63]	1)
EoC	8	62	55	[62:55]	Address: 18 hits
SP	6	54	49	[54:49]	
Pixel	3	48	46	[48:46])
ТоА	16	45	30	[45:30]	ן <i>ו</i>
ufToA_start	4	29	26	[29:26]	
ufToA_stop	4	25	22	[25:22]	(Time: 29 bits
fToA_rise	5	21	17	[21:17])
fToA_fall	5	16	12	[16:12]	
ТоТ	11	11	1	[11:1]	
Pileup	1	0	0	[0:0]	

Energy: 21 bits

Timepix4 Readout Modes : Frame-based

- Full frame non-zero suppressed readout with continuous readwrite (CRW):
 - 8-bits or 16-bit counter depth
 - Frame rate limited by bandwidth (and probably power):
 - Required Readout bandwidth before counter overflow:
 - 8-bit @ 1Gc/mm²/s >20.48 Gbps
 - 16-bit @ 8Gc/mm²/s >1.28 Gbps
 - Minimum \rightarrow Maximum Frame Rates:
 - 8-bit 338 fps @40Mbps → 86.5 Kfps @160 Gbps
 - 16-bit 169 fps @40Mbps → 43.2 Kfps @160 Gbps

Name	Width	MSB	LSB	Bits			
Pixel 3/7	16	63	48	[63:48]			
Pixel 2/6	16	47	32	[47:32]			
Pixel 1/5	16	31	16	[31:16]			
Pixel 0/4	16	15	0	[15:0]			

16-bit frame

8-bit frame

Name	Width	MSB	LSB	Bits
Pixel 7	8	63	56	[63:56]
Pixel 6	8	55	48	[55:48]
Pixel 5	8	47	40	[47:40]
Pixel 4	8	39	32	[39:32]
Pixel 3	8	31	24	[31:24]
Pixel 2	8	23	16	[23:16]
Pixel 1	8	15	8	[15:8]
Pixel 0	8	7	0	[7:0]

Timepix4 Floorplan

Edge periphery floorplan

- Digital on top design:
 - Default periphery size is 460.8 µm
 - Scripted to allow different periphery sizes
- WB openings 4x 100x70 μm
 - Multiple probing pads
- TSV M1 octagons of 69 μm
- First version of edge routing
 - 13158.4 x 5.4 μm
 - Buffer routing between peripheries

Pixel Matrix (256 x 51.4 μmPeriphery (460.8 μm) WB_Periphery (900 μm) 49

TSV (on M1) and BUMPs (on M10)

Timepix4 submissions

Gain slopes for different FE Gain

[TOA-TOT, few pixels]

TOA Resolution [TOA-TOT, 1 pixel, 10000 samples, HG e-]

- Preliminary results
- FE settings in nominal power mode
- Pixels on top of peripheries not described here
- Ctest=3.2 fF assumed

	Electron collection		Holes collection		
	High Gain	Low Gain	High Gain	Low Gain	Log Gain
Pixel gain	~35.8mV/ke-	~20.5mV/ke-	~34.5mV/ke-	~20.5mV/ke-	~20.5mV/ke-
Gain variation	<2%	<2%	<2%	<2%	<2%
ENC	~65 e⁻ _{rms}	~80 e⁻ _{rms}	~65 e ⁻ _{rms}	~80 e⁻ _{rms}	~80 e ⁻ _{rms}
Amplitude Linearity	< 7 ke-	< 12 ke-	< 7ke-	< 13 ke-	< 7ke-
Threshold Eq	< 35 e ⁻ rms	< 60 e ⁻ _{rms}	< 35 e ⁻ _{rms}	< 60 e ⁻ _{rms}	tbd
Min Threshold	< 450 e ⁻	< 650 e⁻	< 450 e⁻	< 650 e⁻	tbd
TOT Energy resolution (Si) (@ Qin < ~2ke-)	<1.5 keV _{FWHM}	tbd	<1.5 keV _{FWHM}	tbd	tbd
TOA bin size	~160 ps (instead of 195 ps)				
TOA resolution (@Qin>~7ke-)	<100 ps _{rms}	tbd	<100 ps _{rms}	tbd	tbd

High speed links

- Timepix4 uses a novel low power serializer developed at Nikhef (GWT):
 - 16 links: 8 in each side
 - Configurable bandwidth from 40Mbps to 10.24Gbps
- Using Tektronix scope with 6GHz Bandwidth
- All links enabled
- PRBS-31 pattern
- Pixels above serializers works as others

Equalization at nominal settings

Timepix4v2 ENC

Timepix4v1/2: Number of Noisy pixels (>1 count) in DD

Timepix4 2D VCO distribution

- Map done pulsing 224 pixels simultaneously (max expected 150)
- Main systematics due to digital power supply:
 - At the PCB?
- This should largely improve with TSVs (extra center power supply row)
- Through TDC measurement we have a nice way to measure power supply distribution in 2D

Timepix4 assembly (300µm Si sensor)

Timepix4 – works! 🙂

10 s exp. ⁹⁰Sr

5 ms timeslice

Photon counting image Timepix4

4Dphoton: Integrate Timepix4 in a photo tube

Concept already proven with 4 Timepix chips

See: J Vallerga et al. https://iopscience.iop.org/article/10.1088/1748-0221/9/05/C05055

Ongoing effort with Timepix4 started See: M. Fiorini et al. <u>https://iopscience.iop.org/article/10.1088/1748-0221/13/12/C12005/pdf</u>

Energy calibration with sources

• Validation with radioactive sources(¹³⁷Cs and ²⁴¹Am superimposed spectra)

https://indico.global/event/8935/contributions/85485/attachments/39904/74219/iWoRiD_2024_Bolzonella.pdf

64

Calibration of on pixel VCOs

- On pixel VCO oscillation frequency controlled by a PLL at the center of the chip (@ 640 MHz nominal)
- It has been measured that on pixel VCO oscillate around 640 MHz with a spread of around 40 MHz
- Spread caused by power supply dispersion due to large size and wire bonds: large improvements expected with TSV
- > Finer ToA bins generated with different width
- Timing performances heavily affected by this effect
- Internal test pulse tool exploited to calibrate
 VCO frequencies for the whole matrix
 (28672 VCO)

arXiv:2404.15499

Integration into photo-sensitive tube

- Prototype vacuum tube produced by Hamamatsu HPK
 - first prototypes received one month ago
- Main characteristics:
 - Multi-alkali S20 photocathode
 - peak QE > 30% at 380 nm
 - \circ 6 µm MCP channel diameter (7.5 µm pitch)
- Several variants for complete characterization
 - 2-MCP stack and 3-MCP stack
 - 1d 2d 3d end-spoiling

TSV processing of Timepix4 - 3 on-going activities

Supplier	IZM (D)	LETI (F)	PTI (TW)
Wafer size (mm)	200	200	300
Front side UBM	Yes	No	Yes
Front side bumps	No	No	Yes
TSV diameter/ thickness (um)	60/120	60/120	38/180
Rear side RDL	Yes	Yes	Yes
Status	Second batch of wafers just completed	First batch of wafers just completed	Starting work

The LA-Picopix project

LA-PicoPix is a large scale hybrid pixel detector with the aim of fulfilling all <u>known</u> requirements for the LHCb VELO upgrade:

- Large area \rightarrow 256x256 pixel array
- **Timing** \rightarrow <50 ps_{rms} per Hybrid (ASIC + Sensor)
- Rate \rightarrow Worst ASIC in Scenario A ~75 events/BxiD (3 ·10⁹ clusters · s ⁻¹)
- Radiation hardness → <500 Mrad with full TMR logic design
- Spatial resolution \rightarrow pixel size <55 µm

Design Approach:

- Built from gained experienced from previous hybrid pixel detectors tracking detectors:
 - Timepix (2007) → Timepix3 (2013) → Velopix1 (2016) → Timepix4 (2020)
 - CERN and Nikhef design team
- Directly profiting from EP-RD program:
 - WP5.3: Intelligence on detector, WP5.2: IP blocks, 3EP5.5: 3D interconnects
 - WP6: High Speed links

The Picopix design \rightarrow LA-Picopix

Why Large Area?

- Precise timing (<50ps) in a large array introduces several additional challenges that need to be faced at the early stage → needs silicon prove on a full-size chip
 - Clock jitter

 power distribution
 IR-drop induced jitter
 Data readout
 Time corrections
 etc....
- Wafers available \rightarrow simplifies bumping and sensor development

A large-area prototype submission requires an engineering run >1.2 M\$ but:

- An approach similar to the Medipix and RD53 Collaborations \rightarrow An ASIC for multiple users
- 3 main potential users:
 - VELO LHCb
 - SY-BI Beam instrumentation
 - Medipix collaboration

Timing

- **Target resolution of <20ps_{rms}** track time is required to distinguish PV
- Single plane resolution of $<50 \text{ps}_{\text{rms}} \rightarrow \sigma^2_{\text{sensor}} (40 \text{ps}_{\text{rms}}) + \sigma^2_{\text{ASIC}}$

•
$$\sigma^2_{ASIC} (30 \text{ps}_{rms}) \rightarrow \sigma^2_{analogFE} + \sigma^2_{conversion} + \sigma^2_{clock}$$

•
$$\sigma^2_{\text{conversion}} \rightarrow \frac{TDC_{bin}}{\sqrt{12}} \rightarrow TDC_{bin} = 40 \text{ps} \rightarrow 11.5 \text{ ps}_{rms}$$

• $\sigma^2_{clock} \rightarrow$ Reference clock at pixel level < 10 ps_{rms}

•
$$\sigma_{analogFE}^2 \rightarrow < 25 \, ps_{rms}$$

Fundamental limits to time resolution in analog front-end

- C_{DET} , C_{FB} , and C_{OUT} are the front-end input, feedback, and output capacitances, respectively.
- g_m is the input transconductance
- V_{THR} is the threshold of the comparator
- \rightarrow Minimize the front-end output capacitance.
- \rightarrow Maximize the input charge and decrease the threshold.

 \rightarrow Increase the analog pixel power consumption, but a large power drop over the ASIC worsens the timing performances!

→ The front-end input capacitance must be minimized, which depends on the choice of the sensor, pixel pitch... **R.Ballabriga**, The Timepix4 analog front-end design: Lessons learnt on

Simulated jitter at the CSA ouput versus input charges 10^2 $\frac{10^2}{10^2}$ $\frac{10^2}{10^2}$ $\frac{10^2}{$

fundamental limits to noise and time resolution in highly segmented hybrid

pixel detectors https://doi.org/10.1016/j.nima.2022.167489

LA-Picopix: Summary and status

- LA-Picopix is a large-area Particle Tracking detector ASIC with < 30 ps_{RMS} timing resolution, on-chip clustering support, data-driven readout up to 3.9 ·10⁹ cluster · s ⁻¹:
 - Targets all <u>known</u> LHCb VELO upgrade requirements
 - Other partners (Medipix and CERN-SY) to contribute on the financing of the engineering submission.
 - Potential applications:
 - LHCb velo (main specifications) beam gas monitoring radiation monitoring X-Ray imaging 4D STEM
 X-ray photon correlation spectroscopy Mass spectrometry Medical applications (SPECT/PET) etc..
- LA-Picopix builds up from the experience of the design team in previous large area tracking hybrid pixel detectors and CERN EP-RD programs
- Target submission by end of 2025

- X-ray materials analysis with diffraction
- Photon counting cameras at synchrotrons
- Time resolved cameras at synchrotrons
- X-ray non-destructive testing
- X-ray dosimetry dosepix chip development
- Waste sorting using X-rays
- Low Energy Electron Microscopy
- Transmission electron microscopy
- Dose deposition tracking in hadron therapy
- Numerous satellite systems dedicated to space weather observation

Applications for CERN/Physics

- LHCb VELOpix chip is directly derived from Timepix3
- LHCb Timepix3 telescope 80 Mhits/cm²/sec
- Sensor studies for CLIC/LHCb
- Background radiation monitoring at ATLAS and CMS
- Beam Gas Interaction monitor CERN PS
- Beam monitoring in UA9
- Positron annihilation in Aegis
- ASACUSA experiment
- Breit-Wheeler experiment at RAL
- Beta particle channeling in ISOLDE
- Forward physics using Timepix3?
- Axion search at CAST (with InGrid)
- Large area TPC (with InGrid)
- Transition radiation measurements for ATLAS
- GEMPIX development for radiation therapy beam monitoring
- GEMPIX for ⁵⁵Fe waste management
- Developments for CLIC: CLICpix, CLICpix2, C3PD

Summary and Conclusions

- Hybrid pixel detectors were developed as tracking detectors of LHC
- The Timepix family of chips spans 20 years. Each generation provides improved time stamping
- Timepix3 and Timepix4 when combined with a Si sensor provide noise-hit-free bubble-chamber-like imaging with always-on triggerless readout.
- When combined with an appropriate convertor material, single visible photon hits can be streamed out extremely useful in quantum sensing applications
- Timepix4 (time stamp within 200ps bin) is in production and can be tiled on 4 sides using TSVs
- LA-Picopix will provide on-pixel timestamping within a bin of 40ps

Thank you for your attention!

Timepix4 paper: X. Llopart *et al* 2022 *JINST* **17** C01044

Medipix3RX images: S. Procz et al.