Transition Edge Sensors: From First Principles to Applications in Particle Detection and Quantum Technologies

José Alejandro Rubiera Gimeno

Postdoctoral researcher at Helmut-Schmidt-Universität (HSU)

Outline

- Beginning of Transition Edge Sensors (TES)
- TES physics
- High energy photon detection
- Visible to IR photon detection
- Applications in Quantum technologies

Transition Edge Sensor (TES)

- Cryogenic detector operated at transition region
- Connected to a colder thermal bath
- Possible definition of the point in the transition

Transition Edge Sensor (TES)

- Cryogenic detector operated at transition region
- Connected to a colder thermal bath
- Possible definition of the point in the transition
- Change in resistance produced by energy deposition
- Very good energy resolution

- Cryogenic detector operated at transition region
- Connected to a colder thermal bath
- Possible definition of the point in the transition
 - Controlling bath temperature

$$C\frac{dT}{dt} = -P_{bath} + P_{ext}$$

Thermal circuit
$$P_{bath} = K(T^{n} - T_{bath}^{n})$$

- Cryogenic detector operated at transition region
- Connected to a colder thermal bath
- Possible definition of the point in the transition
 - Controlling bath temperature

- Connected to a colder thermal bath
- Possible definition of the point in the transition
 - Controlling bath temperature

Thermal circuit

Electrical circuit

 $\tau = \frac{c}{nKT^{n-1}}$

Controlling bath temperature

- Cryogenic detector operated at transition region
- Connected to a colder thermal bath
- Possible definition of the point in the transition
 - Controlling bath temperature

- Cryogenic detector operated at transition region
- Connected to a colder thermal bath
- Possible definition of the point in the transition
 - Voltage-biased TES

K. Irwin, G. Hilton, Transition-edge sensors, in: Cryogenic Particle Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 63–150, http://dx.doi.org/10.1007/10933596_3.

- Cryogenic detector operated at transition region
- Connected to a colder thermal bath
- Possible definition of the point in the transition
 - Voltage-biased TES
- Superconducting Quantum Interference Device (SQUID) readout

- Cryogenic detector operated at transition region
- Connected to a colder thermal bath
- Possible definition of the point in the transition
 - Voltage-biased TES

- Cryogenic detector operated at transition region
- Connected to a colder thermal bath
- Possible definition of the point in the transition
 - Voltage-biased TES

- Cryogenic detector operated at transition region
- Connected to a colder thermal bath
- Possible definition of the point in the transition
 - Voltage-biased TES

TES Small Signal Theory

 $\frac{dT}{dt} = -P_{bath} + V_{bias}^2 / R + P_{ext}$ Thermal circuit $P_{bath} = K(T^n - T_{bath}^n)$ $L\frac{dI}{dt} = V_{bias} - IR$ Electrical circuit

Linearize with respect to working point for small variations of T, I and R

$$\alpha = \frac{T_0}{R_0} \frac{\partial R}{\partial T} \bigg|_{I_0} \qquad \beta = \frac{I_0}{R_0} \frac{\partial R}{\partial I} \bigg|_{T_0}$$

- Cryogenic detector operated at transition region
- Connected to a colder thermal bath
- Possible definition of the point in the transition
 - Voltage-biased TES

TES Small Signal Theory

• Voltage-biased TES

TES Small Signal Theory

$$\begin{split} \alpha &= \frac{T_0}{R_0} \frac{\partial R}{\partial T} \bigg|_{I_0} & \beta = \frac{I_0}{R_0} \frac{\partial R}{\partial I} \bigg|_{T_0} & \text{Strong electrothermal feedback (ETF) if } \mathcal{L} \gg 1 \\ & \text{If L is small, so } \tau_+ \ll \tau_-: & \tau_- = \frac{\tau}{1 + \mathcal{L}/(1 + \beta)} & \mathcal{L} = \frac{I_0^2 R_0 \alpha}{GT_0} & \tau_- = \frac{\tau}{1 + \alpha/n} \end{split}$$

$$I \int_{T_{+}}^{T_{+}} \int_{T_{-}}^{T_{-}} \delta I = A \left[\exp \left\{ -\frac{t}{\tau_{+}} \right\} - \exp \left\{ -\frac{t}{\tau_{-}} \right\} \right]$$

TES noise and energy resolution

TES noise and energy resolution

TES physics summary

*Courtesy of Katharina-Sophie Isleif

TES physics summary

*Courtesy of Katharina-Sophie Isleif

High energy photon detection

X-ray and gamma TES detectors

Absorber big enough to increase probability of X-ray and gamma interaction

Decay time
$$\tau_{-} = \frac{C/G}{1 + \alpha/n}$$

Theoretical limit for TES energy resolution $\Delta E_{FWHM} = 2\sqrt{2 \ln 2} \sqrt{4k_B T_0^2 \frac{C}{\alpha} \sqrt{\frac{n}{2}}}$

C increases due to the absorber ΔE worsens and τ_{-} increases

X-ray and gamma TES detectors

C increases due to the absorber ΔE worsens and τ_{-} increases

Excellent energy resolution of ~0.01%

A Review of X-ray Microcalorimeters Based on Superconducting Transition Edge Sensors for Astrophysics and Particle Physics. *Applied Sciences*, *11*(9), 3793. https://doi.org/10.3390/app11093793

Extending the range to ~100 keV

Rev. Sci. Instrum.. 2012;83(9). doi:10.1063/1.4754630

Extending the range to ~100 keV

Rev. Sci. Instrum.. 2012;83(9). doi:10.1063/1.4754630

X-ray astrophysics

- X-rays emitted by ionized atoms and energetic electrons near active objects
- Energies of discrete X-ray lines reveal elements
- Doppler shift of lines indicate dynamic conditions of elements
- Presence of several ionization lines

X-ray astrophysics

- X-rays emitted by ionized atoms and energetic electrons near active objects
- Energies of discrete X-ray lines reveal elements
- Doppler shift of lines indicate dynamic conditions of elements
- Presence of several ionization lines

Athena/X-IFU to be launched with more than 3000 pixels

Visible to IR photon detection

Visible to IR photon TES detectors

The TES is the absorber \rightarrow C lower ΔE is lower and τ_{-} also lower

Decay time
$$\tau_{-} = \frac{C/G}{1 + \alpha/n}$$

Δ

Theoretical limit for TES energy resolution

$$E_{FWHM} = 2\sqrt{2 \ln 2} \sqrt{4k_B T_0^2 \frac{C}{\alpha} \sqrt{\frac{n}{2}}}$$

Visible to IR photon TES detectors

Propagating photons to the detector

Use of an optical fiber to transmit photons to the TES

A tungsten microchip ($25 \ \mu m \times 25 \ \mu m \times 20 \ nm$) provided by NIST and SQUID and packaging PTB stabilized in the transition region (~ 140 mK)

* TES setup at DESY

Propagating photons to the detector

Use of an optical fiber to transmit photons to the TES

TES at DESY for the ALPS II experiment

doi:10.22323/1.449.0567

* TES setup at DESY

A tungsten microchip ($25 \ \mu m \times 25 \ \mu m \times 20 \ nm$) provided by NIST and SQUID and packaging PTB stabilized in the transition region (~ 140 mK)

Optimized for 1064 nm photon $E \approx 1.2 \text{ eV}$ with an optical stack

doi:10.22323/1.398.0801 doi:10.3204/PUBDB-2024-07357

Background in the TES

Fiber disconnected from the TES.

The recorded rate of events in the order is usually below 10^{-1} cps (depends on the trigger)

Origin associated to radioactivity and cosmic rays.

TES response different than photon pulses. Allows pulse shape discrimination and machine learning

e.g. [1] < 10⁻⁵ cps @ 1064nm

Schematic adapted from Katharina-Sophie Isleif.

[1] doi:10.22323/1.398.0801 [2] doi:10.3204/PUBDB-2024-07357

Background in the TES

Fiber disconnected from the TES.

The recorded rate of events in the order is usually below 10^{-1} cps (depends on the trigger)

Origin associated to radioactivity and cosmic rays.

TES response different than photon pulses. Allows pulse shape discrimination and machine learning

e.g. [1] < 10⁻⁵ cps @ 1064nm

Fiber connected from the TES and other end in the dark.

The recorded rate of events in the order can be up to 10^1 cps (depends on the trigger)

Mainly Black Body Radiation coupling to the optical fiber.

TES energy resolution allows background discrimination [2] $< 10^{-4}$ cps @ 1064nm

Very low background requires other strategies.

Schematic adapted from Katharina-Sophie Isleif.

Multicolor measurement with TES

doi:10.3204/PUBDB-2024-07357

- Use in energy dispersive spectroscopy for bioanalysis research and industry.
- Sensitive to different wavelengths

TES

Exposure 8 min

Conditions: 100x brightness 10x exposure

doi:10.1038/srep45660

Photon Number resolution

- Near unity quantum efficiency
- Very good photon number resolution
 - Number of photons of same wavelength arriving at a given time.
- Maximum repetition rate depending on decay time of TES pulses

Quantum Metrology with TESs

- TES allow direct access to photon statistics from light sources.
- Possibility to study entangled and squeezed states.
- Analysis and exploration of solid-state-based quantum light sources for applications in quantum information, quantum-enhanced sensing and quantum metrology

doi:10.1103/PhysRevA.82.031802

TES in quantum computing

doi:10.1103/PhysRevApplied.16.024025

- Combining TES with a superconducting qubit on a shared silicon substrate.
- Idea of detecting correlated disturbances induced by the radiation.
 - TES as a veto to reject the calculations that could be potentially incorrect due to an environmental disturbance.
- Monitoring with a TES has been demonstrated.

Towards future TESs

- High detection efficiency > 95%, up to 99.8% @ 1550nm
- Faster TESs
- Better energy resolution
- Improve in readout complexity
- Lower background level

Towards future TESs

- High detection efficiency > 95%
- Faster TESs
- Better energy resolution
- Improve in readout complexity
- Lower background level

An optical transition-edge sensor with high energy resolution

K. Hattori^{*a,b,c*} & T. Konno^{*a*} & Y. Miura^{*a*} & S. Takasu^{*a*} & D. Fukuda^{*a,c*}

Fast transition-edge sensors suitable for photonic quantum computing

Cite as: J. Appl. Phys. **133**, 234502 (2023); doi: 10.1063/50149478 Submitted: 17 April 2023 · Accepted: 25 May 2023 · Published Online: 16 June 2023

Ruslan Hummatov,^{1,2,a)} ⁽¹/₂ Adriana E. Lita,² ⁽¹/₂ Tannaz Farrahi,^{1,2} ⁽¹/₂ Negar Otrooshi,^{1,2} ⁽¹/₂ Samuel Fayer,³ Matthew J. Collins,³ ⁽¹/₂ Malcolm Durkin,^{1,2} ⁽²/₂ Douglas Bennett,² ⁽¹/₂ Joel Ullom,² ⁽¹/₂ Richard P. Mirin,² ⁽³/₂ and Sae Woo Nam² ⁽³/₂

https://doi.org/10.1038/s44172-024-00308-y

Kinetic inductance current sensor for visible to near-infrared wavelength transition-edge sensor readout

Check for updates

Paul Szypryt [©] ^{1,2} ⊠, Douglas A. Bennett², Ian Fogarty Florang [©] ^{1,2}, Joseph W. Fowler [©] ^{1,2}, Andrea Giachero^{1,2,3}, Ruslan Hummatov [©] ^{1,2,4}, Adriana E. Lita², John A. B. Mates², Sae Woo Nam², Galen C. O'Neil², Daniel S. Swetz², Joel N. Ullom^{1,2}, Michael R. Vissers², Jordan Wheeler² & Jiansong Gao²⁵

Thank you!

References

- Transition-edge sensors, in: Cryogenic Particle Detection. http://dx.doi.org/10.1007/10933596_3
- A Review of X-ray Microcalorimeters Based on Superconducting Transition Edge Sensors for Astrophysics and Particle Physics. https://doi.org/10.3390/app11093793
- A high-resolution gamma-ray spectrometer based on superconducting microcalorimeters. https://doi.org/10.1063/1.4754630
- The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase. https://doi.org/10.1007/s10686-022-09880-7
- Optimizing a Transition Edge Sensor detector system for low flux infrared photon measurements at the ALPS II experiment. https://doi.org/10.3204/PUBDB-2024-07357
- A TES system for ALPS II Status and Prospects. https://doi.org/10.22323/1.449.0567
- Superconducting transition-edge sensors optimized for high-efficiency photon-number resolving detectors. https://doi.org/10.1117/12.852221
- Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. https://doi.org/10.1103/PhysRevA.82.031802
- Sensor-Assisted Fault Mitigation in Quantum Computation. https://doi.org/10.1103/PhysRevApplied.16.024025
- Fast transition-edge sensors suitable for photonic quantum computing. https://doi.org/10.1063/5.0149478
- An optical transition-edge sensor with high energy resolution. https://doi.org/10.1088/1361-6668/ac7e7b
- Kinetic inductance current sensor for visible to near-infrared wavelength transition-edge sensor readout. https://doi.org/10.1038/s44172-024-00308-y

Backup

SQUID multiplexing

Also, microwave KID And microwave SQUID

Any Light Particle Search II (ALPS II)

Schematic adapted from Todd Kozlowski

Transition Edge Sensor in ALPS II

Requirements for ALPS II:

- Sensitivity to very low rates (1-2 photons a day)
- Low energy photon detection (1064nm equivalent to 1.16eV)
- Long term stability (~20 days)
- High system detection efficiency [1]
- Low background rate: $< 7.7 \cdot 10^{-6} \text{cps} \sim 1 \text{ photon}$ (1064nm–like) every 2 days
 - Intrinsics [2]
 - Extrinsics
 - Good energy resolution (for background rejection) [1]

[1] J. A. Rubiera Gimeno, F. Januschek, K.-S. Isleif, A. Lindner, M. Meyer, G. Othman, C. Schwemmbauer, R. Shah, "A TES system for ALPS II - Status and Prospects", PoS EPS-HEP2023 (2023) 567. <u>https://doi.org/10.22323/1.449.0567</u>
[2] Rikhav Shah, Katharina-Sophie Isleif, Friederike Januschek, Axel Lindner and Matthias Schott, "TES Detector for ALPS II", Proceedings of The European Physical Society Conference on High Energy Physics, Volume 398, Page 801, (2022); <u>https://doi.org/10.22323/1.398.0801</u>

Extrinsics background

