

3D interconnects for readout electronics

Perceval Coudrain CEA-Leti, Univ. Grenoble Alpes, France

Outline

- Towards vertical integration ?
- Enabling 3D integration toolbox
- Focus on sensing applications
	- Fan-out wafer-level packaging **P. Coudrain, AIDAinnova Course on Quantum Applications – 23-24 January 2025, CERN**
P. Coudrain, AIDAinnova Course on Quantum Appli**cations – 23-24 January 2025, CERN**
	- Integration challenges

3D integration… not really a new idea !

Three-Dimensional IC Trends

YOICHI AKASAKA

Invited Paper

VLSI will be reaching to the limit of minimization in the 1990s, and after that, further increase of packing density or functions might depend on the vertical integration technology.

Three-dimensional (3-D) integration is expected to provide several advantages, such as 1) parallel processing, 2) high-speed operation, 3) high packing density, and 4) multifunctional operation.
Basic technologies of 3-D IC are to fabricate SOI layers and to
stack them monolithically. Crystallinity of the recrystallized layer in SOI has increasingly become better, and very recently crystalaxis controlled, defect-free single-crystal area has been obtained in chip size level by laser recystallization technology.

Some basic functional medels showing the concept or image of a future 3-D IC were fabricated in two or three stacked active lay-

Production around 2000...

Personalism:

Production around 2000...

Personalism:

Production around 2000...

P. Coudrain, AIDAinnova Course on Quantum Applications – 23-24 January 2025, CERN

P. Coudrain, AIDAinnova Course

7-level stacked "Nanosheet" gate all around transistor,

Moore's law puts pressure on interconnects

• Consequences of miniaturization

Dramatic R.C product increase \rightarrow interconnect delay

• Countermeasures to reduce R.C

Switch from AI to Cu & Iow-k dielectrics, air gaps **Sangle Construe Concult** cross section

Back end of line design rules (Intel)

R.C delay has become a major performance issue

New paradigms emerged

• Interconnects Bottleneck

Circuit frequencies limited Limited bandwidth between chips

• Scaling becomes costly

High manufacturing cost, low yield with large die **EXACTER** 1985 High development cost: masks, IP porting, verif…

• Heterogeneous architectures needed

More processing: AI, perception accelerators… More data to handle: memory capacity, fusion... More modularity, scalability & sustainability

How to reach them ?

3D benefits for advanced systems

- Best of all trends: Moore + more than Moore System on Chip performance + System in Package diversity
- **High-performance interconnections** Soc performance Low R, L, C + massively parallel vertical processing
- Modern answers to design needs

Partitioning, IP reuse, scalability & density, heterogeneity

**P. Condition Course on Quantum Applications – 23-24 January 2025, CERN
Procession, Alphonson Course on Quantum Applications – 23-24 January 2025, CERN
Procession, Alphonson** Enabling 3D integration toolbox **P. Coudrain, AIDAInnova Course on Quantum Applications – 23-24 January 2025, CERN**
P. Coudrain, AIDAInnova Course on Quantum Applications – 23-24 January 2025, CERN

1.

Morphology of a 3D circuit

3D circuit
• Thin stacked layers
Layer 1 (# bottom die) / (...) / Layer N (# top die) Layer 1 (# bottom die) $/(...)$ / Layer N (# top die)

Layer-to-layer vertical interconnects **12 Circuit**
 Thin stacked layers

Layer 1 (# bottom die) / (...) / Layer N (# top die)
 Layer-to-layer vertical interconnects

Miniaturization trend: pillars, hybrid bonding ...

• Intra-layer vertical interconnects

Miniaturization trend: p
 Intra-layer vertical interconnects

Communication between frontside and backside of each layer

Through silicon vias (TSV), Through glass vias (TGV)...
 Intra-layer in-plane interconnects (2D

Assembly configurations

-
- -
	-

Pure packaging operation

Die to die by Wafer to wafer bie to wafer

**Wafer to wafer

Wafer to wafer

Collective process

• High assembly throughput

• High alignment accuracy

• Yield loop Wafer to wafer

Collective process

• High assembly throughput

• High alignment accuracy

• Yield loss Wafer to wafer

• Collective process
• High assembly throughput
• High alignment accuracy
• Yield loss
• Strong design limitation** Θ **: Wafer to wafer

• Collective process

• High assembly throughput

• High alignment accuracy

• Yield loss

• Strong design limitation

• Strong design limitation

• Strong design limitation Wafer to wafer

• Collective process
• High assembly throughput
• High alignment accuracy
• Yield loss
• Strong design limitation

Mass production**

Mass production for image sensors and memories P. Coudrain, AIDAinnova Course on Quantum Applications – 23-24 January 2025, CERN

P. Coudrain, AIDAinnova Course on Quantum Applications – 23-24 January 2025, CERN

P. Coudrain, AIDAinnova Course on Quantum Applications –

-
-
-
-
-

Breakthrough processes needed

Wafer bonding techniques
Why & how ?

• Why & how ?

Thin wafer processing (<300µm) Wafer-to-wafer 3D stacking **Wafer bonding techniques

Why & how ?

Thin wafer processing (<300µm)

Wafer-to-wafer 3D stacking

Temporary <u>or</u> permanent bonding

A wide range of processes**

• A wide range of processes

Each with own strengths and weaknesses

Direct bonding process

Bonding without added material Fig. 30.

Based on attraction of very smooth surfaces Flatness & cleanliness at all scales \rightarrow planarization

• SiO₂/SiO₂ bonding

Required roughness < 0,65nm rms [2] Van der Waals interaction at T_{amb} Covalent bonds formed after annealing Required roughness < 0,65nm rms ^[2]

Covalent bonds formed after annealing

Covalent bonds formed after annealing

Required roughness < 0,5nm rms ^[3]

Cu recrystallization during annealing > 200°C ^[4]

RE Rieutord,

• Cu/Cu bonding

Required roughness < 0.5 nm rms $^{[3]}$

Cu recrystallization during annealing $>$ 200 $^{\circ}$ C ^[4]

Bonding wave: glass to Si & Si to Si bonding

SiO $_2$ /SiO $_2$ interface after annealing

^[2] F. Rieutord, et al. *ECS Trans.*, vol. 3, no. 6, pp. 205–215, 2006

"TSV last" low density process

"TSV last" low density proders (SV 1984)

• Done <u>after</u> full CMOS process ^[5]

Wafer bonding on carrier & low temp. process

AR (= height/diameter) increased over time Wafer bonding on carrier & low temp. process AR (= height/diameter) increased over time Keep out zone + alignment \rightarrow area penalty

• Industrially mature since 2008

CMOS image sensors

[5] D. Henry et al., Electronic Components and Technology Conference, 2008

"TSV middle" process

**"TSV middle" process
• Done <u>during</u> CMOS process [6]**
Aspect ratio usually > 10, Diameter 2-15 µm
TSV etched & filled with Cu prior to BEOL process Aspect ratio usually > 10, Diameter 2-15 μ m TSV etched & filled with Cu prior to BEOL process TSV revealed on backside after Si thinning Reduced keep out zone vs. TSV last

• Industrially mature since 2013

FPGA (Xilinx), DRAM stacks

resonators

grinding

[6] P. Coudrain et al., EPTC 2012

"High density TSV" (HD-TSV) process flow W **• Property TSV" (HD-TSV)
• Done <u>after</u> circuit processing [7]**
Diameter typically < 2µm & height <15 µm
Ultra-uniform Si thinning (TTV < 1µm) \rightarrow direct bonding

Diameter typically < 2µm & height <15 µm Ultra-uniform Si thinning (TTV < $1 \mu m$) \rightarrow direct bonding

R&D activity

Power delivery network (PDN), SPAD arrays

Base wafer

Base wafer

SiO₂/SiO₂ bonding Uniform thinning Via etching

3-15 µm

Layer-to-layer 3D interconnects

**Solder-based interconnects
Solder material choice linked to temp
SnPb (183°C), SnAg (221°C), (...) In (152°C)
Interconnects processing** Solder-based interconnects for flip-chip

• Solder material choice linked to temperature

• Interconnects processing

Paste printing, ball serigraphy for large geometries Semi-additive process (ECD) for reduced pitch **Solder-based interconnects for flip**
 Solder material choice linked to temperature

SnPb (183°C), SnAg (221°C), (...) In (152°C)
 Interconnects processing

Paste printing, ball serigraphy for large geometries

Semi-ad Paste printing, ball serigraphy for large geome

Semi-additive process (ECD) for reduced pitch

Polymer underfill systematically added in free Ste printing, ball serigraphy for large geon

mi-additive process (ECD) for reduced pi

ymer underfill systematically added in fre

Paste printing

Paste printing

Paste printing

Paste printing

Paste printing

Paste prin Serigraphy for large geometries

ess (ECD) for reduced pitch

ystematically added in free space

The space

For cu/SnAg

ECD

The spac

ECD ECD ECD

ECD Semi-additive process 2-layer stack on BGA: 10µm Pillars between top and bottom and 70µm bumps between bottom and BGA [8]

• Well mature technique, but limited in density

Direct hybrid bonding process: a hot topic !

• Mix $\text{SiO}_2/\text{SiO}_2$ & Cu/Cu bonding

Precautious chemical mechanical polishing $\frac{5}{3}$ Specific design rules to control dishing in Cu

• Unprecedented interconnect pitch

1 μ m pitch demonstrated in 2017^[10], 0.4 μ m in 2024 Precision alignment is key: 50nm expected in 2025

Direct hybrid bonding principle

[9] Y. Beilliard, PhD Thesis, Univ. Grenoble Alpes, 2015

Non Cu-based bonding

**Non Cu-based bonding
• Ti/Ti hybrid bonding [11]
x3 µm² pad, 7 µm pitch with sub-µm alignment
Reliability & RF characterisations up to 40 GHz** 3x3 μ m² pad, 7 μ m pitch with sub- μ m alignment Reliability & RF characterisations up to 40 GHz

• Nb/Nb bonding ^[12]
Superconducting interconnects
m² pad, 7 µm pitch with sub-µm alignment Superconducting interconnects 3x3 μ m² pad, 7 μ m pitch with sub- μ m alignment

P. Coudrain, AIDAinnova Course on Quantum Applications – 23-24 January 2025, CERN
P. Coudrain, AIDAinnova Course on Quantum Applications – 23-24 January 2025, CERN 3D integrated sensors 2.

**Benefits of 3D Integrati
Dimensional considerations
Reduced form factor (x,y,z)
Abuttable sensors
Architectures exploration!** Benefits of 3D Integration for image sensors

• Dimensional considerations

Reduced form factor (x,y,z)

• Architectures exploration!

Parallel pixel processing Layers functionalization & optimization

[4] D. Henry et al., Electronic Components & Technology Conference, 2008

Medipix / Timepix hybrid pixel detectors

**Medipix / Timepix hybrid pixel
• Abuttable detector on ROIC
Abuttable sensors assembly with no dead zone
TSV last integration, 100 TSV per chip [16]
200 mm process with 120 µm height & 60 µm diameter Medipix / Timepix hybrid pix
Abuttable detector on ROIC
Abuttable sensors assembly with no dead zone
TSV last integration, 100 TSV per chip [^{16]}
200 mm process with 120 µm height & 60 µm diameter
Transfer on 300 mm pro** TSV last integration, 100 TSV per chip [16] 200 mm process with 120 µm height & 60 µm diameter Transfer on 300 mm process targeted with 180 µm height

Timepix4 die 24x30mm

Infrared focal plane arrays integration

II-VI or III-V detector (ex: Mercury-Cadmium-Telluride)
Hybridization on Read-out IC (ROIC) Hybridization on Read-out IC (ROIC) Electrical & mechanical interconnection needed

In bumps interconnects

Low melting point (157°C) CTE mismatch accommodation

Miniaturization challenges [17]

UBM: critical dimensions Indium: cavity filling & shortcuts Hybridization: misalignment Hybridization: intermetallic compounds EXAMING THE MISTINGTON COMMODATION
 Miniaturization challenges [17]

UBM: critical dimensions

Indium: cavity filling & shortcuts

Hybridization: misalignment

Hybridization: intermetallic compounds

Untoff

10-

10-

P.

VGA (640x512) detector

**Large-area X-ray imaging
Flat panel
Scintillator: Csl:Tl scintillator (600µm)
Active matrix with a-Si thin film transistors (TFT)
Challenges** Large-area X-ray imaging

Flat panel

Active matrix with a-Si thin film transistors (TFT)

• Challenges

SNR enhancement, spatial resolution improvement Large area (43x43 cm²), stability under irradiation

Directions

Direct detection with semiconductor instead of scintillator

Indirect detection **Exercise Systems** Direct detection **Direct detection** Development of low temp. perovskite-based detectors

Backside illumination as an enabler for 3D CIS

Backside illumination process requires wafer bonding on a carrier. There's just one step to **Backside illumination as an enable**
Backside illumination process requires wafer
bonding on a carrier. There's just one step to
3D integration: replace carrier by a functional wafer!

Logic

• 2-layer CIS (2013)

Oxide bonding [18] followed by hybrid bonding [19]

SiO2/SiO2 bonding

Pixels **BSI**

• 3-layer CIS (2017)

Intermediate DRAM layer [20]

[19] Y. Kagawa et al., IEDM, 2016

SONY 3D CIS with hybrid bonding (2016)

GaAs PIN photodiodes & SiGe transimpedance amplifier

3D integration for SPAD sensors
Separating detection & readout

• Separating detection & readout

Layer optimization: CIS (90nm) & CMOS (22nm) Better sensitivity, high FF, low DCR, functionality

• 3D technology largely evolved over time

Bridges ^[21], oxide bonding with metal vias ^[22] Bumping, hybrid bonding [23]

³D Geiger-Mode APD with Two SOI Timing Circuit Layers [22]

BSI 10 um SPAD pixel with FTI & Cu-Cu bonding [23]

Smart imager developments

• From imagers to vision sensors

Edge-AI applications for autonomous vehicle

3-layer scheme [24]

Pixel array / Readout IC / AI & memory layer 2 hybrid bonding with 1x10um HD-TSV Autonomous vehicle functions

1x10μm TSV (2μm pitch), R_{TSV} = 500mΩ
Misalignment HB2: max. 1 μm (avg 200 nm)

HBM

HBM

bonding/HD TSV transitions

2-layer stacked 4T pixels CMOS Image Sensors

Pixel split for full well increase $[34]$

BSI pinned photodiode + transfer gate on layer 1 RST, source follower & read transistors on layer 2

Sequential integration mandatory

Misalignment between layer << 1 µm Mono. Si transfer + low temp. CMOS process Monocristalline Si layer transfer [1]

2-layer pixel schematics based on 3D sequential integration

Deep photodiodes, oxide-based full trench isolation (FTI), 1µm dual photodiodes [35]

Sequential 3D combined with hybrid bonding

Increased diode area **Hybrid Bonding PADs not visible here**

44% for 1.4µm pitch

Smart pixel

Adaptation, calibration $\mathbf{E} \equiv \mathbf{E} =$ Pre-processing

Opportunity for pixel partitioning with pitch in the µm range and distributive computing for high efficiency [36] Node

Holde

ential CMOS process

temperature top level

cable to heterogeneous and CMOS 3D
 **Opportunity for pixel partition

distributive computi**

^{38]} F. Guayder et al., IEDM 2022

^{38]} F. Guayder et al., IEDM 2022

cea

P. Could be a
P. Could be a countum Application
P. Could be a country and Applications – 23-24 January 2025, CERN JANUARY 3.
Heterogeneity with
fan-out wafer level fan-out wafer level packaging (FOWLP)

3.

FOWLP process in a nutshell

FOWLP high frequency applications FOWLP high frequency applica
5G Front-End modules $^{[26]}$. 60

• 5G Front-End modules [26]

• 60 GHz radar systems **VERENT SCREEN SIGNATIONS**

Vital signal detection, Antenna in package

Vital signal detection, Antenna in package

P. Coudrain, AIDAinnova Course on Quantum Applications – 23-24 January 2025, CERN
P. Coudrain, AIDAinnova Course on Quantum Applications – 23-24 January 2025, CERN Integration challenges (a few words)

 0.0171 $,035$ $.079$ -0.129 -0625

Thermomechanics & reliability

vs. pitch reduction

with pitch reduction, EM defect moves from BEOL to hybrid bonding levels, but extrapolated lifetimes are not affected at use conditions [27]

• No diffusion identified, thanks to the presence of 3 nm $Cu₂O$ layer barrier, stable with time and temperature $[28]$

[28] Ayoub et al., Micro rel. 2023

Thermal dissipation

- Dense integration at all scales brings real challenges in terms of heat dissipation
- Thermal modelling essential from the earliest design phases for IC & SiP
- Efficient heat extraction methods become a necessity
- Integration at wafer scale will become a key objective

Embedded silicon vapor chamber

STM/CEA/LN2 PhD Thesis Q. Struss) (STM/CEA/LN2 PhD Thesis Q. Struss)

Take-home messages

• 3D integration & advanced packaging have become strong drivers of innovation in electronics

3D & advanced packaging approaches were able to overcome some of Moore's law issues and answer design needs

Image sensors clearly played a pioneering role in the advent of 3D integration

It is conceivable that any heterogeneous architecture Superconducting Nb/Nb bonding for can now be realized in one way or another, but…

Cost-performance trade-off, timely development Standardization & efficiency, ecological impact ! \rightarrow still very much in the spotlight

• Designers are often not fully aware of the 3D toolbox capability \rightarrow come & discuss!

interposer

quantum interposers

Optical transceiver

Thanks for your attention

CEA-Leti, Grenoble, France cea-leti.com perceval.coudrain@cea.fr

Province Trends
Province on Course on Course on Course 2025, 20 Other fields benefiting from 3D architectures 3. P. Coudrain, AIDAinnova Course on Quantum Applications – 23-24 January 2025, CERN
P. Coudrain, AIDAinnova Course on Quantum Applications – 23-24 January 2025, CERN

Chiplet approach: Heterogenous IC design
Chiplet approach: Heterogenous IC design

• Interposer & chiplets

Interconnects performance \rightarrow R.C delay Exceeding latency & bandwidth limits Cost/form factor advantages

- Appropriate partitioning MONOLITHICSOC
- Heterogeneous IC design

Optimized technology for each function specialization by app.: CPU, GPU, AI (...) Standardization (coming soon, hopefully)

Trendy R&D fields for interposers

• Active interposers

Interconnect performance, power management, network on chip…

Chiplet on interposer topology

Chiplets 28nm FDSOI 6x22mm² **Interposer**

65nm 200mm²

INTACT active interposer [37]

Reduced on-chip latencies & energy consumption, increased bandwidth

TSV mid (12x100µm) coafter Metal 1

Silicon Photonic Interposer with the state of Nb vias 4 chiplets and 6 electro-optical drivers in 28nm FD-SOI

Quantum interposers [39]

Superconducting routing

[37] P. Coudrain et al., ECTC 2019 [38] D. Saint-Patrice, ECTC 2023

[39] C. Thomas et al., Materials for Quantum Technology, 2, 3, 035001, (2022)

47

New generation of quasi-monolithic chips (QMC)

• Flexible combinations of Si process & packaging techniques for ultra-high density 3D architectures to fit future computing & AI needs **Flexible combinations of Si process & pack**
techniques for ultra-high density 3D archite
fit future computing & AI needs
Intel (2022) ^[54]
Enabling Next Generation 3D Heterogeneous Integration Architectu
Process
I **techniques for ultra-high density 3D arch

fit future computing & AI needs

• Intel (2022) ^[54]

Enabling Next Generation 3D Heterogeneous Integration Archit

Process

Interposer replaced by a chiplets layer filled with**

Intel (2022)^[54]

[54] A. Elsherbini et al., IEDM 2022

Enabling Next Generation 3D Heterogeneous Integration Architectures on Intel Process

Interposer replaced by a chiplets layer filled with dielectric

Package **Top Chiplet Top Chiplet** Package

10X interconnect power reduction high density back-end compatible

