Quantum Computing/Sensing: Are Cryo-CMOS Circuits Essential?

Edoardo Charbon

January 24th, 2025

AIDAinnova training course on quantum applications

Outline

- Quantum computing
- Quantum sensing / quantum imaging
- Why cryogenic electronics?
- The design of a qubit controller
- Perspectives

Principle, again

- Proposal to use of entanglement, superposition and quantum interference for computation
- Fundamentals and theory developed in the 1980-2000

There is plenty of space at the bottom

- Richard Feynman

Superposition, again

The Power of superposition

1 qubit	2 states
2 qubits	4 states

N qubits.....2^N states

40 qubits: 10¹² parallel operations 300 qubits: more than the atoms in the universe

Entanglement, again

Definition: two particles are entangled if the quantum state of one particle cannot be described independently from the quantum state of the other particle.

Intuition: measuring the quantum state of one particle implies knowledge of the quantum state (e.g. momentum, spin, polarization, etc.) of the other entangled particle using the same projection.

The qubit, again

 φ : azimuth δ : global phase (ignored in the Bloch sphere)

How to build a qubit: the transmon

• Similar to a LC tank with a non-linear load (a double Josephson junction)

P. Krantz et al., A quantum engineer's guide to superconducting qubits, Appl. Phys. Rev. 6, 021318 (2019)

How to control a qubit

Classical vs. quantum computing

Courtesy: Joseph Bardin, ISSCC 2022

Multi-qubit quantum algorithm

- Initialize qubits
- Create superposition
- Encode function in unitary
- Process
- Measure

Maintain quantum coherence

Quantum Sensing / Quantum Imaging

Definitions

- Within quantum technology, a Quantum Sensor utilizes properties of quantum mechanics, such as quantum entanglement, quantum interference, and quantum state squeezing, which have optimized precision and beat current limits in sensor technology [...].
- Quantum Imaging is a new sub-field of quantum optics that exploits quantum correlations such as quantum entanglement of the electromagnetic field, in order to image objects with a resolution or other imaging criteria that is beyond what is possible in classical optics [...].

Source: Wikipedia

Quantum imaging

- Quantum LiDAR
- Ghost imaging
- Qua
 Qua
 [Andrei Nomerotski] Require *either* single-
 - Qua photon granularity *or* picosecond
 - timestamping, sometimes both
- Qua....,
- Quantum super-resolution
- Quantum plenoptic cameras
- Quanta burst photography

Quantum distillation

- a) Hide quantum image in plain sight
- b) Separate quantum image away from classical image

H. Defienne et al., Science Advances 5(10), 2019

Frontside CMOS SPAD

Niclass et al. 2007 – Richardson et al. – Pellegrini et al.

Reproducible, reliable, miniaturizable

Backside-illuminated SPAD

Near-ultraviolet CMOS SPADs

Ultrafast CMOS SPADs

F. Gramuglia et al., Frontiers in Physics, 2022

Photon-number resolving SPAD array: SwissSPAD2/3

The phenomenal CMOS SPAD evolution

- Timing resolution (100ps \rightarrow 7.5ps)
- Sensitivity
 - Photon Detection Probability (PDP) ($10\% \rightarrow 90\%$)

○ Fill-factor ($1\% \rightarrow 80\%$)

- Dead time (100ns →1.5ns)
- Dark counts (kcps → cps → mcps)
- Afterpulsing $(10\% \rightarrow 0.1\%)$

cps = counts per second kcps = 10³ cps mcps = 10⁻³ cps

The true marvel: scaling

10μm F. Liu and E. Charbon, Optics Express 2024

Why Cryogenic Electronics?

Emerging applications may require cryo

- SNSPDs
- SPADs
- Quantum computing
- High-performance computing

Wollman et al, Optics Express (2019) MacCaughan et al, APL (2022)

Edoardo Charbon ©2025

Role of classical control in QC

Charbon et al., IEDM 2016

- Carrier frequency: 5 6 GHz
- Pulses: 10 100 ns
- Various readout schemes

Examples of readout schemes: ESR: Electron spin resonance – EDSR: Electric dipole spin resonance

Current solution

Proposed solution

- Proposed solution
 - Electronics at 4 K
 - Only connections to 4 K to 20 mK are needed

- Ultimate solution
 - Qubits at 4 K
 - Monolithic integration

Cooling power issue

Electronic readout & control

E. Charbon et al., IEDM 2016

How do we get electrical specs?

- State-of-the-art spin qubits: fidelity < 99.9%
- Target: 99.99% (four 9's)
 - This translates to a SNR > 44 dB for a bandwidth of 25 MHz

Scalability issue

- Noise budget.....< 0.1nV/vHz
- Power budget (for scalability)..... << 2mW/qubit
- Physical dimensions (for scalability)....... 30nm
- Bandwidth (for multiplexing).....1-12GHz
- Kick-back avoidance

The design of a qubit controller

The right technology

	Device	Lowest useable temperature	Limit
	Si BJT	100 K	Low gain
	Ge BJT	20 К	Carrier freeze-out
	SiGe HBT	4 K (or lower)	
	Si JFET	40 K	Carrier freeze-out
ſ	III-V MESFET	4K (or lower)	Lower freeze-out?
1 -	CMOS (>160nm)	4 K	Non-idealities
	CMOS (<40nm)	40 mK	Power dissipation

Extensive modeling campaigns

- CMOS 0.16µm STMicroelectronics
- CMOS 40nm TSMC
- CMOS 28nm STMicroelectronics bulk/FDSOI
- CMOS 22nm FDSOI Global Foundries
- CMOS 16nm FinFET TSMC

RF modeling of CMOS 22nm FDSOI

Qubit controller: the problem at hand

The design of Horse Ridge

	Value	Infidelity con to an operation	tribution to idling		
Frequency				Noise source	ENBW
nominal	10 GHz	$0.64 \times 10^{-9(a)}$	4 40-6(b)	Frequency poice	2 5 MHz
spacing	1 GHz	105 10-6	$1 \times 10^{-0(0)}$	Wideband additive paice	2.3 11112
inaccuracy		125×10^{-6}	308×10^{-6}		2.9 MIL
oscillator noise	11 KHZ rms	125 × 10 °	308×10^{-6}	Amplitude noise	
nuclear spin noise	1.9 KHZ rms	- 3.6 × 10 °	8.9 × 10 °	Amplitude off-holse	2.0 MHZ
wideband noise	12 µV _{rms}	125×10^{-6}			
Phase	\frown				
inaccuracy	(0.64°)	125×10^{-6}	$31 \times 10^{-6(d)}$	(a) Due to the RWA.	1A cotup
Amplitude	\smile			(c) From [61] $T^* = 120 \text{ m}$	s
nominal	2 mV			(d) EDMA 7-corrections lin	nit the idl
inaccuracy	14 µV	125×10^{-6}		^(e) Equivalent to -41 dBc	ine the ful
noise	14 µV rms	125×10^{-6}		Equivalent to Trabe.	
off-spur	19 µV ^(e)		217×10^{-6}		
off-noise	10 µV _{rms}		125×10^{-6}		
Duration	1000000			leroen van	
nominal	500 ns			Jerben van	<i>р</i> јк, п
inaccuracy	3.6 ns	125×10^{-6}			
noise	3.6 ns rms	125×10^{-6}			
		$F_{X,Y} = 99.9\%$	<i>F</i> _I = 99.9 % ←	—— Target fid	elity

Noise source	ENBW	Noise level
Frequency noise	2.5 MHz	$\mathcal{L}(1 \text{ MHz}) = -106 \text{ dBc/Hz}$
Wideband additive noise	2.9 MHz	7.1 nV/√Hz
Amplitude noise	1.0 MHz	$14 \mathrm{nV}/\sqrt{Hz}$, SNR = $-40 \mathrm{dB}$
Amplitude off-noise	2.0 MHz	7.1 nV/√Hz

to the RWA. to leakage in FDMA-setup using rectangular envelopes. $[61], T_2^* = 120 \, \mu s.$ A Z-corrections limit the idling operation. valent to -41 dBc.

Jeroen van Dijk, Thesis, 2021

Initial architecture

Lower Speed DAC + Mixer

Analog: noise/linearity specifications known + feasible

Final architecture

Patra, van Dijk, Xue et al., ISSCC 2020 & JSSC 2020

The Horse Ridge chip & package

Measurement setup

Self-heating

Instruction set memory

No high-speed connection required during quantum algorithm execution

On-chip memory

Edoardo Charbon ©2025

Qubit device in experiments

• Two-qubit processor

Cross-section view

X.Xue, B. Patra, arXiv, 2020

Rabi experiment

Multiple qubit manipulations: the Ramsey experiment

Randomized benchmarking

- Up to 60 Clifford gates: Each Clifford gate is averaged over 32 different randomized sequences
- □ Consistently repeatable: Fidelity limited by qubit sample

Fidelity = 99.71±0.03% Fidelity = 99.69±0.02%

Simultaneous Rabi oscillations by way of FDMA

Xue, Patra, van Dijk et al., Nature 2021

2-qubit gate

Deutsch-Jozsa Algorithm

Xue, Patra, van Dijk et al., Nature 2021

Perspectives

Integrated qubits

Y. Peng *et al.*, JSSC 2022 A. Ruffino *et al.*, *Nature Electronics* 2021

Integrated qubit controllers

A. Ruffino et al., ISSCC 2021 - Y. Peng et al., JSSC 2022

Kang et al., ISSCC 2023

Bardin et al., ISSCC 2019

Patra, van Dijk, Xue *et al.*, JSSC 2020 Xue, Patra, van Dijk *et al.*, *Nature* 2021

Yoo et al., ISSCC 2023

Peng, Benserhir et al., CICC 2024

Underwood et al., ISSCC 2023 Parker et al., Nature Electronics 2022

Edoardo Charbon ©2025

Take-home messages

- Quantum computing and quantum sensing/imaging are here to stay
- Cryogenic electronics can be useful
- But, new tools are badly needed:
 - Cryo-cooling
 - Cryo-modeling
 - Cryo-design
 - Cryo-metrology

Study Quantum Mechanics or dust up your old books

Thank You http://aqua.epfl.ch

2nd User Group Meeting, Les Diablerets, 2024 Next UGM: 2026

