

29 July 2024

MAR

The NA60+ setup

The NA60+ setup

Geometry

Simplified MS setup

Size of rectangular chambers (ultrashort, small chambers)

geometry build via TGeo

ACTS geometry

(Still old geometry used)

- Dipole magnet also in the muon spectrometer
- Rectangular chambers

Mapping

Geantino particles are propagated in the fully detailed geometry (gdml)
 → the material encountered by the geantinos is stored

- plot shows the X0 of the material vs z (i.e. at the entrance of all subdetectors)
- continuum lines are due to particles which first cross, for example, the W plug at the z where the plug starts, and then they cross, at a random z, the absorber

Mapping

- 1) Geantino particles are propagated in the fully detailed geometry (gdml)
 - \rightarrow the material encountered by the geantinos is stored
- 2) Test particles are propagated in the simplified ACT geometry, assigning materials to layers \rightarrow a material map is created
- 3) Propagation is now carried on in the decorated ACTS geometry
 - \rightarrow results are compared to those obtained with the full geometry, to validate the mapping

Magnetic field

Figure 6. Plotted at X = 40, Y = 360 mm are: (left) B_X versus Z, (centre) B_Y versus Z and (right) B_Z versus Z. The different colours and symbols are used to enable points from different sensors to be distinguished.

A magnetic field map (x, y, z) is created, covering the full volume of the ACTS geometry

Assume B = (0, By, 0)

field = acts.examples.MagneticFieldMapXyz("BField_MNP33.txt");

MNP33 Magnetic field map from https://inspirehep.net/files/4706e9a213757975c85c

<u>nttps://inspirenep.net/files/4706e9a213757975c856</u> <u>3fdbedc6f5bc</u>

Next step: add also the vertex telescope dipole in the B map

Test of B field

Hits in the 6 Muon spectrometer chambers

Particle gun

- LS muons
- pT = 0.5 GeV
- eta = 2.5

MNP33 B field map [0,By,0]

Hits after FATRAS tracking

Test of B field

9

OS muons

eta = 2.5

pT = 0.5 GeV

Parametrisation of the muons from JPsi decay, as obtained from NA60+ fast simulation [Elab = 40 GeV]

Store the kinematics of the two decay muons in csv format

Use the csv as input in the sim/reco chain

FATRAS tracking

Simulated particles are tracked in the setup via FATRAS

eta.eta

20

Hits on the MS chambers

Hits after FATRAS tracking (particles simulation.root)

Statistics:

- 10000 events
- 20000 generated muons
- ~19000 after FATRAS tracking
- ~14000 if preselection (1.8,10) is applied
- ~13000 hits (due to the eta coverage of the MS)

We mostly lose hits from particles with eta<2

Hole in MCH0

The first chamber has a hole 22 x 22 cm2

The hole is not in the geometry, for the moment:

ignore measurements in a given x,y region (in the digitization step) [--> Giacomo]

```
auto pos = simHit.fourPosition();
if (m_cfg.applyHole){
    if(abs(pos[0])<110 && abs(pos[1])<110 && pos[3]<3200 && pos[3]>2800){
      ACTS_VERBOSE("Skip hit because inside the hole")
      continue;
}
```

Seeding

Digits smearing:

SP rotation

SP are rotated, as well as B field, from (0, By, 0) to (0, 0, -By)

Acts::Vector3 position{sp.x(), sp.z(), -sp.y()}; Acts::Vector2 covariance{0.1, 0.4};

Seed Grid

Not yet fine tuned So far 1 bin in phi, 3 in z

SpacePointGridConfigArg(
 rMax= 7500 * u.mm,
 zBinEdges=[-2500.,-1250.,1250.,2500.],

Seeding planes \rightarrow use chambers 1, 2, 3, 4

Seeding - first 4 chambers

Tuning of seeding parameters (doublets)

Seeding - first 4 chambers

So far, very broad cuts, not really optimised

A more strict cut on the collision region has a significant impact on efficiencies at high eta

Tuning of seeding parameters (triplet)

Seeding - first 4 chambers - performances

Efficiencies are rather flat everywhere

Efficiency = number of particles having a matched seed / nAllParticles (having at least 3 hits)

Seeding - first 4 chambers - performances

Without filtering and confirmation

With filtering and confirmation

Different behaviour at the edges \rightarrow confirmation to be

tuned

Seeding - comparisons

3 chambers 4 chambers	NA60+_Summary_nTotalSeeds= 11884 NA60+_Summary_nTotalMatchedSeeds= 11884 NA60+_Summary_nTotalParticles= 13013 NA60+_Summary_nTotalDuplicatedParticles= 11884 NA60+_Summary_nTotalDuplicatedParticles= 0 NA60+_Summary_Fff= 0.913241 NA60+_Summary_Fakerate= 0 NA60+_Summary_Purity= 1 NA60+_Summary_Duplication= 0 NA60+_Summary_DuplicatedSeeds= 0 NA60+_Summary_nTotalSeeds= 48580 NA60+_Summary_nTotalMatchedSeeds= 48580 NA60+_Summary_nTotalParticles= 13013 NA60+_Summary_nTotalMatchedParticles= 12924 NA60+_Summary_nTotalDuplicatedParticles= 11890 NA60+_Summary_fff= 0.993161 NA60+_Summary_Fakerate= 0	 nTotalSeeds (tot number of seeds) nTotalMatchedSeeds (seeds entirely matching a particle) nTotalParticles (tot number of particles) nTotalMatchedParticles (particles having a matched seed) nTotalDuplicatedParticles (particles matching more than a seed?) Efficiency (nMatchedParticles / nAllParticles) Fake rate (nUnMatchedSeeds / nAllSeeds) Total seed purity (nTotalMatchedSeeds / nTotalSeeds) Duplication rate (nDuplicatedMatchedParticles / nMatchedParticles) Average number of duplicated seeds ((nMatchedSeeds - nMatchedParticles) / nMatchedParticles) 	
	NA60+_Summary_Purity= 1 NA60+_Summary_Duplication= 0.919994 NA60+_Summary_nDuplicatedSeeds= 2.7589	Seed Filter/ Confirmation compares middle and bottom SPs to other top SP 	
4 chambers + confirmation	NA60+_Summary_nTotalSeeds= 24729 NA60+_Summary_nTotalMatchedSeeds= 24729 NA60+_Summary_nTotalParticles= 13013 NA60+_Summary_nTotalMatchedParticles= 12864 NA60+_Summary_nTotalDuplicatedParticles= 11865 NA60+_Summary_Eff= 0.98855 NA60+_Summary_Fakerate= 0 NA60+_Summary_Purity= 1 NA60+_Summary_Duplication= 0.922341 NA60+_Summary_nDuplicatedSeeds= 0.922341	(checking heilx parameter, layers) • assign a weight to the seed • select seeds which can produce high quality tracks • confirmation: check if z and r cuts are satisfied Weights to be tuned: $w = =c_1 \times d_0 + (c_2 \times N_1 - z_0)$ where • d_0, z_0 are the transverse and longitudinal impact parameters • N_1 is the number of top SP compatible with a seed	

Track parameters estimated from seeding

→ large Loc0 and Loc1 params No requirements on the vertex position in the seeding step Parameters are evaluated at the bottom SP

Figure 3: The perigee representation expressed in the ATLAS track parameterisation. The local expression of the point of closest approach is given by the signed transverse impact parameter d_0 and the longitudinal impact parameter z_0 . The momentum direction is expressed in global coordinates using the azimuthal angle ϕ that is defined in the projected x - y plane and the polar angle θ , which is measured with respect to the global z axis.

In the perigee representation, the loc0 and loc1 parameters are the d0 and z0 params

So far, no tuning on chi2 or on number of branches

4 chambers

TrackFindingAlgorithm statistics:

- total seeds: 48580
- deduplicated seeds: 0
- failed seeds: 0
- failed smoothing: 0
- failed extrapolation: 68
- failure ratio seeds: 0
- found tracks: 48516
- selected tracks: 48516
- stopped branches: 0

Efficiency with tracks (nMatchedTracks/ nAllTracks) = 1 Fake rate with tracks (nFakeTracks/nAllTracks) = 0 Duplicate rate with tracks (nDuplicateTracks/nAllTracks) = 0.734335 Efficiency with particles (nMatchedParticles/nTrueParticles) = 0.990471 Fake rate with particles (nFakeParticles/nTrueParticles) = 0 Duplicate rate with particles (nDuplicateParticles/nTrueParticles) = 0.913087

Ambiguity resolution

CKF does not solve ambiguities \rightarrow ambiguity resolution is applied a posteriori

The duplicate rate is now zero

pT [GeV/c]

Parameters

At the end of the CKF, the parameters of the track are evaluated in 0,0,0

Residuals

Pools

Invariant mass

Given the two reconstructed muons, the JPsi invariant mass is obtained

To do

- Optimise all steps
- Test different seeding/CKF combinations (different number of planes)
- Add a realistic background to the JPsi signal

Seeding in r, z

When planes are close, the search in r does not identify in a unique way the planes

In all the planes the range in r where the search is allowed should be not too narrow

Eta of the MS chambers

	Eta (x)	Eta (y)	Eta max
МСН0	1.88	2.5	4
MCH1	1.81	1.98	infinite
MCH2	1.95	2.12	infinite
МСН3	2.03	2.06	infinite
MCH4	1.88	2.06	infinite
MCH5	1.88	2.06	infinite

Mapping

Compare amount of material encounter by tracks vs eta and phi

Ratio of crossed material in ACTS and in full geometry

mapping probably reflects the C radius (100cm), slightly larger than the rectangular chambers. MCH0 is 187 x 156 \rightarrow CHECK

Test of B field (B = 0)

Particle gun

- OS muons
- pT = 0.5 GeV
- eta = 2.5

B field map [0,0,0] → assume ZERO B field

Hits after FATRAS tracking

Truth estimate (seeding)

4 chambers

NA60+_Summary_nTotalSeeds= 12930 NA60+_Summary_nTotalMatchedSeeds= 12930 NA60+_Summary_nTotalParticles= 13013 NA60+_Summary_nTotalMatchedParticles= 12930 NA60+_Summary_nTotalDuplicatedParticles= 0 NA60+_Summary_Eff= 0.993622 NA60+_Summary_Fakerate= 0 NA60+_Summary_Purity= 1 NA60+_Summary_Duplication= 0 NA60+ Summary_NDuplicatedSeeds= 0

TrackFindingAlgorithm statistics:

- total seeds: 12930
- deduplicated seeds: 0
- failed seeds: 0
- failed smoothing: 0
- failed extrapolation: 38
- failure ratio seeds: 0
- found tracks: 12892
- selected tracks: 12892
- stopped branches: 0

I'm requiring at least 3 hits at denominator

Seeding - first 3 chambers

000

-1

-2 ---

Tuning of seeding parameters (doublets)

Seeding - first 3 chambers

+|-[[-∎|||-

So far, very broad cuts, not really optimised

A more strict cut on the collision region has a significant impact on efficiencies at high eta

rMinMiddle and rMaxMiddle changed by hand in SeedFinderConfig.hpp

Tuning of seeding parameters (triplet)

Very selective cut in the VT (cut at 0.1mm level) Vertex not used in the seeding

Seeding - first 3 chambers - performances

Loss at high eta due t the hole in MCH0

NA60+_Summary_nTotalSeeds= 11884 NA60+_Summary_nTotalMatchedSeeds= 11884 NA60+_Summary_nTotalParticles= 13013 NA60+_Summary_nTotalMatchedParticles= 11884 NA60+_Summary_nTotalDuplicatedParticles= 0 NA60+_Summary_Eff= 0.913241 NA60+_Summary_Fakerate= 0 NA60+_Summary_Purity= 1 NA60+_Summary_Duplication= 0 NA60+_Summary_DuplicatedSeeds= 0

tot number of seeds seeds entirely matching a particle tot number of particles particles having a matched seed particles matching more than a seed? nMatchedParticles / nAllParticles nUnMatchedSeeds / nAllSeeds nTotalMatchedSeeds / nTotalSeeds DuplicatedMatchedParticles / nMatchedParticles Average number of duplicated seeds ((nMatchedSeeds - nMatchedParticles) / nMatchedParticles)

- So far, no tuning on chi2 or on number of branches
- In EstimateTrackParamsfromSeed.hpp I define bFieldMin = 0.01 T (the minimum magnetic field to trigger the track parameters estimation by default is 0.1T)
- No cut on nMeasurementMin

High eta particles are mostly concentrated at low pT

CKF efficiency

seeding:truth estimate

Not clear why I loose tracks at low pT, large eta

Parameter errors

Large errors on eLOC0 and eLOC1

At the end of the CKF, the parameters of the track are evaluated in 0,0,0