Updated Resistivity measurement on Mm-Batch-4 Bakelite & RPC Bakelite sample measurements

Liang Guan

TGRPC R&D Biweekly meeting

Updated Mm-Batch-4 Bakelite Measurements

Test Electrode

Side view

Guarded electrode

Guard electrode

Long term stability

Bulk Resistivity vs. HV

* Current is read out within 2 min charging time.

Charging Time

U=500V T: 25.9C RH:31%

5

TGRPC – Bakelite Sample Measurements

Samples

- □ 11 sample received from
- Su MinFa @ June, 17th 2011
- Phenolic plate with two melamine surfaces
- **\square** 4 of the samples are ~2mm thick.
- **\Box** Other 7 samples are ~1mm thick.
- **D** Small size: $10 \text{ cm} \times 10 \text{ cm}$
- □ 2 two of the samples have brown color
- □ Samples are numbered

BS-XXX-XX

Thickness (1)

Thickness (2)

Surface condition (1)

Surface condition (2)

Surface condition (3)

Surface condition (4)

Bulk resistivity (1)

- BS-001-01 sample is tested with
 - different methods (use sample resistor, Pico ammeter)

14

- ▶ Pico ammeter calibration test: 3.075 M Ω → test value: 3.2 M Ω
- Comparison of measured resistivity: (use carbon film as electrodes, T=23.5C, RH:40%)

		A _{eff} [cm²]	Current [A]	ρ [Ω·cm]	Charging time	
Sample resistor	10 kΩ	40.95	1.9×10 ⁻⁶	5.4×10 ¹⁰	~ 2 h	
	3 <i>M</i> Ω	40.95	1.47×10 ⁻⁶	6.96×10 ¹⁰	~ 2 min	
Pico ammeter		40.95	1.4×10 ⁻⁶	7.3×10 ¹⁰	~ 35 min	

Bulk resistivity (2)

different test electrode sizes

A _{eff} [cm ²]	Current [A]	ρ [Ω ·cm]	Charging time	T [C]	RH [%]
40.95	1.4×10 ⁻⁶	7.3×10 ¹⁰	~ 35 min	23.5	40
19.6	1.2×10 ⁻⁶	4.1×10 ¹⁰	\sim 2 min	26	34

Note that the difference of the measured bulk resistivity value comes from the temperature difference, resistivity non-uniformity and charging time. But they still on the same order in the room temperature range (24-26 C)

- different electrodes
 - Carbon film:(merit)very good contact with sample material, no pressure needed, reasonable measurement repeatability, (demerit) hard to peel off from sample
 - Conductive rubber: sensitive to pressure

3atm pressure is applied on test electrode for CMS Bakelite resistivity measurement

→ this means 64 kg weight on our ~20cm^2 test electrode

45 kg weight on electrode tested, only get 1/20 of the current compared with the value obtained with carbon film electrode

Conductive rubber (2mm thick)

rubber filled with small conductive mental or carbon spheres

15

Bulk resistivity (3)

Current flowing through test plate as a function of charging time

Bulk resistivity (4)

Sample ID	Aeff [cm^2]	Thickness [cm]	Current [A]	Char. Time [min]	ρ [Ω·cm]	Temp [C]	RH [%]
BS-001-01	40.95	0.2002	1.50E-06	6	6.82E+10	23.4	40
BS-001-02	26	0.189	8.60E-07	5	8.00E+10	25.9	33
BS-001-03	26	0.2002	8.40E-08	5	7.73E+11	25.9	34
BS-001-04	26	0.1964	8.40E-08	5	7.88E+11	25.8	34
BS-001-05	26	0.1001	1.80E-05	7	7.22E+09	25.8	35
BS-001-06	26	0.09431	3.10E-06	5	4.45E+10	25.9	35
BS-001-07	26	0.09368	4.50E-06	5	3.08E+10	25.6	36
BS-001-08	26	0.09408	3.60E-06	5	3.84E+10	25.9	33
BS-001-09	26	0.09402	2.40E-06	5	5.76E+10	25.6	36
BS-001-10	26	0.09548	3.00E-06	5	4.538E+10	25.6	34
BS-001-11	26	0.09351	4.00E-06	4	3.476E+10	25.4	34

* Measured with carbon film electrodes for shot time

Summary & Outlook

- Only one sample (BS-001-05) has the resistivity value in our interest range (<10⁹ Ω ·cm) but **Poor** surface condition and **Poor** thickness uniformity
- Strong dependence of bulk resistivity on temperature. Need further tests with each sample
- Humidity study?
- Charging time curve not very similar from sample to sample. Need further study. (30 min charging time seems OK for quick reference)