

Application of Timepix cameras in optical TPCs for 3D track and events reconstruction in low-energy nuclear reactions

Cristina Cabo cristina.cabo@usc.es

H. Alvarez-Pol¹, Y. Ayyad¹, D. Banzin², M. Caamaño¹, M. Cortesi², B. Fernández¹, W. Mittig², D.P. Suárez-Bustamante¹

¹IGFAE, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain ²Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA

Optical Time Projection Chambers (oTPC)

- Charged particles passing through the gas ionizes it and creates electron-ion pairs.
- Electrons drift from Cathode to the Amplification structure.
- The electron avalanche produces photons in different wavelengths depending on the gas
- GEMs (Gaseous Electron Multiplier) structures multiply this effect.
- A camera is used as optical readout system.

GEM characteristic parameters:

- Investigate the ability to measure:
 - Neutron energies and P_n values using ¹⁶C
 - Differentiate between emitted charged particles using ⁹C
- Collect traces of recoiling nuclei and emitted charge particle to reconstruct the decay energy.
- Use of different gas mixtures (CF₄ and CS₂) and novel GEM detectors.

¹⁶C beam

- P_n=99.30(12)%
- Measured multiple times in great agreement
- Only 3 neutron energies
- 53, 113 and 220 keV recoils should be observed
- Try to reproduce the branching ratios

Decays by β⁺

⁹C beam

- The result is a 165-keV $p^{\scriptscriptstyle +}$ and two 55-keV α
- Already measured at ISOLDE
- Large β^+ background (not us)
- α below threshold
- Great opportunity for particle ID and angular resolution

The Timepix 3 detector

Ultrafast and ultrasensitive particle detector developed at CERN

Timepix 3 detector:

- 256×256 pixel matrix (55 µmx55 µm each), 300 um silicon sensor
- Time resolution: 1.56 ns
- TDC resolution: 260 ps
- Detection wavelength range: 400-1000 nm
- Single photon detection (with image intensifier)
- Event-driven detection mode with up to 80 million hits per second
- Noise free

Output information:

- Simultaneous (x,y) coordinate of the hit
- Time of arrival (ToA) with 1.56 ns
- Time over Threshold (ToT) correlated to energy for each individual pixel

3D information (x,y and time)

Experimental setup: Overview

Amplification structure:

- 3-layer MTHGEM
- Thickness: 0,056 mm/layer
- 0.1 mm hole, 0.7 mm pitch, 0.0mm RIM

Drift region: 4 cm

Gas: Ar, He, CF4 (flow)

Image intensifier:

- Photonis Cricket P47 (Gated Hi-QE green)
- Maximum QE wavelength: 400-475 nm
- No WLS

Camera lens

Image intensifier

Timepix

Experimental setup

EL emission wavelength for different gases

Borosilicate viewport:

- Transmission over 85% in the visible region
- Cut in ~300 nm

Camera lenses:

- Anti-Reflection (AR) in the visible region
- Range 425-675 nm

Argon EL emission:

- 128 nm VUV (Transition of Ar excimers)
- 170-300 nm UV (Third continuum)
- 700-850 nm IR (Atomic emission)
- Neutral Bremsstrahlung in the visible region¹

CF4 emission:

• 581 nm

Helium main contributions in the visible region:

• 389 nm, 587 nm

PEN foil (WLS) emission:

• 430 nm

¹ Measurement of emission spectrum for gaseous argon electroluminescence in visible light region from 300 to 600 nm (Kazutaka Aoyama et al Nucl. Instrum. Methods. Phys. Res. A, V.1025, Feb. 2022)

Tracks reconstruction

Enhancement of optical Time Projection Chamber capabilities for data acquisition, clustering and events recognition:

- Time information
- 2D & 3D projection
- Energy information
- Scattering events information

Events reconstruction in pure CF4

- Pressure: 98 Torr
- Drift: 700 V/cm/bar
- Amplification: 40 kV/cm/bar
- Cricket gain: 0.5 V

CF4 makes easy the tracks visualization

The image intensifier allows to increase the light collection intensity

Clustering allows unambiguous tracks identification

Cosmic rays and undesired data can be easily filtered

Argon data: Visible light and WLS

Argon EL emission sources (400-1000 nm):

- 700-850 nm IR (Atomic emission)
- Neutral Bremsstrahlung in the visible region
- N2 contamination emission
- Additional 430 nm emission using PEN foil as wavelength shifter

Gas pressure: 400 Torr, continuous flow

Scattering events identification

200

Ypix

100

Time information allows us to uncertainly identify events that with a simple 2D projection may look like scattering.

File: Data305_000043 200 100 100 200 0 Xpix Ypix

Pure He @ 500 Torr Drift: 350 V/cm/bar Amplification: 4.42 kV/cm/bar

Pure CF4 @ 98 Torr Drift: 700 V/cm/bar Amplification: 40.0 kV/cm/bar

Scattering events identification

Pure Ar @ 400 Torr Drift: 250 V/cm/bar Amplification: 13.5 kV/cm/bar Pure CF4 @ 98 Torr Drift: 700 V/cm/bar Amplification: 40.0 kV/cm/bar

Pure He @ 300 Torr Drift: 350 V/cm/bar Amplification: 3.68 kV/cm/bar

3D Scatter Plot with Split Clusters File: Data303_020123

Alpha elastic scattering

Argon data: Image intensifier

Argon EL emission sources (400-1000 nm):

- 700-850 nm IR (Atomic emission)
- Neutral Bremsstrahlung in the visible region
- N2 contamination emission
- Additional 430 nm emission with PEN foil WLS

Gas pressure: 400 Torr, continuous flow

Image intensifier gain characterization

- Fixed MThGEM gain (13.5 kV/cm/bar)
- Variable drift velocity (50-300 V/cm/bar)

Saturation for maximum gain $(2 \cdot 10^5 \text{ V})$

Maximum cluster number at optimal drift field value (Magboltz)

To do: User filters to identify scintillation wavelengths

AT-TPC on-going activities: ³He tube

Active Target Time Projection Chamber (AT-TPC)

- Versatile setup for different type of reactions
- Magnetic field enables rigidity measurement
- Cylindrical configuration: large thickness with a moderate cost for electronics
- High resolution (in principle better than solid state detectors)
- High luminosity and large dynamic range
- Use with pure elemental gases

But... the kinematics reconstruction is not trivial

AT-TPC on-going activities: ³He tube commissioning

Tube construction

Assembly into AT-TPC

Commissioning with P10 @ 500 Torr

AT-TPC on-going activities: Entanglement

Commissioning data with ³⁶Ar beam

⁵⁶Ni beam (half-life 3 days, production at Los Alamos)

Selected beam:

- Out of stability valley
- N=Z to find entangled neutron-proton pairs with the quasi-deuterium spin inside the nucleus
- Few thousand of particles per second

Currently on-going experiment at FRIB (Facility for Rare Isotope Beams, Michigan State University, USA)

Thanks for your attention

Funded by

Dimensional drawings

INSTITUTO GALEGO DE FÍSICA DE ALTAS ENERXÍAS 25 + 199

Source: 228Th

Alphas: 5.5 MeV, 6.8 MeV, 8.8 MeV

CF4 @ 98 Torr: 12.4 to 24.8 cm Ar @ 400 Torr: 8.6 to 9.0 cm He @ 300 Torr: 59 to 123 cm He @ 500 Torr: 35 to 74 cm