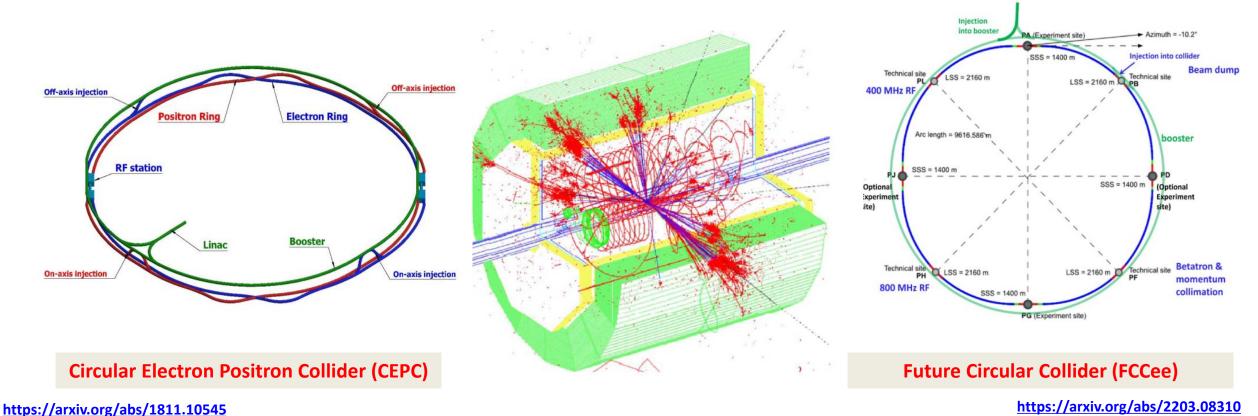


Pixelated Readout TPC Development for the Circular e+e- Collider

Huirong Qi

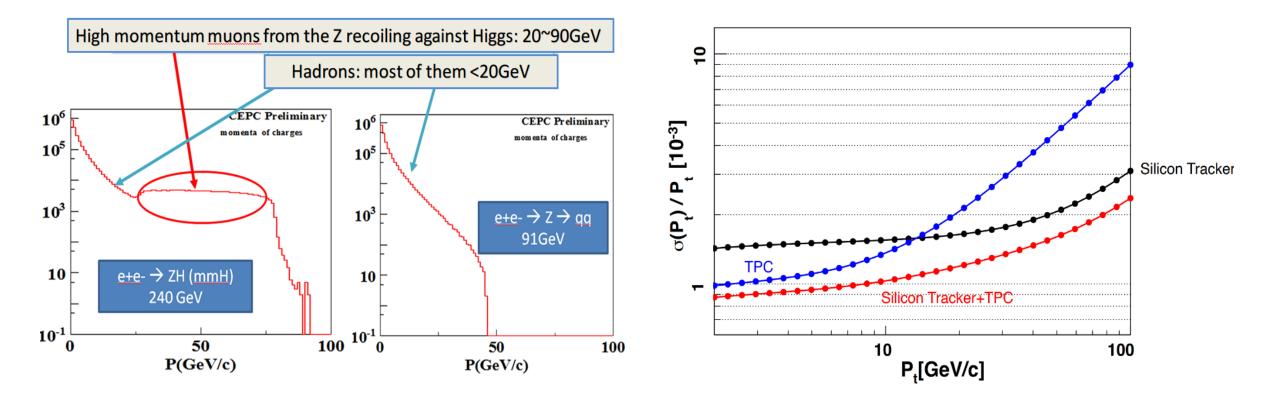

On behalf of the CEPC gaseous tracker R&D group and some inputs from LCTPC international collaboration

3rd DRD1 Collaboration Meeting, 10 December 2024, CERN

- Motivation and physics requirements
- Status of TPC in LCTPC and CEPC
- Pixelated readout TPC for Higgs and Z
- Work plan and Summary

Motivation and physics requirements

- A TPC is the main track detector for some candidate experiments at future e+e- colliders.
 - **Baseline detector concept** of ILD at ILC and CEPC
- TPC technology can be of interest for other future colliders (EIC, FCC-ee)
- Pixelated readout TPC can improve **PID requirements of Flavor Physics at e+e- collider**.

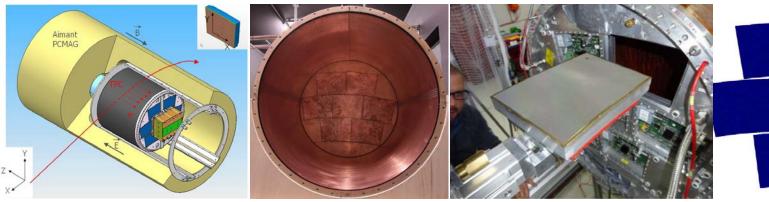


Huirong Oi

Motivation and physics requirements

- Circular e+e- collider operation stages in TDR: <u>10-years Higgs @3T</u> \rightarrow 2-years Z pole \rightarrow 1-year W
- Physics Requirements of the tracker
 - High momentum resolution for Higgs and Z
 - PID for the flavor physics and jet substructure

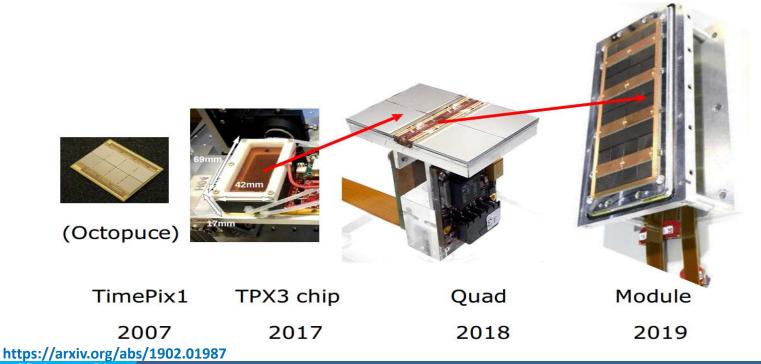
Calibration: Low luminosity Z at 3T Approximately 10³⁵cm⁻²s⁻¹ 1%-20% of high luminosity Z

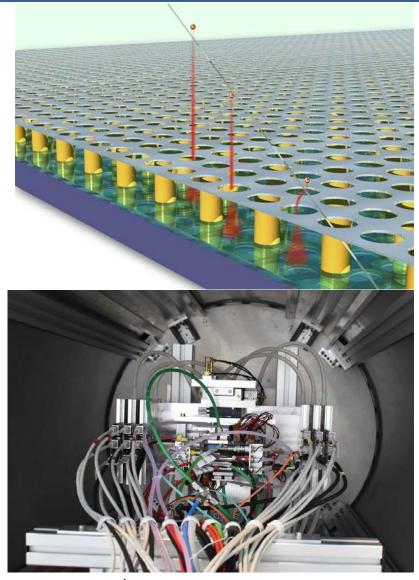

https://doi.org/10.1140/epjc/s10052-018-5876-z

• Status of TPC in LCTPC and CEPC

- **Large Prototype** setup has been built to compare different detector readouts under identical conditions and to address integration issues.
 - PCMAG: B < 1.2T, bore Ø: 85cm
 - Two end plates for the LP made from Al with 7 module window
- LP Field Cage Parameter
 - Length = 61cm, inner \emptyset = 72cm drift field up to E \approx 350V/cm
 - Made of composite materials: 1.24 % X₀

JINST 5: P10011, 2010 JINST 16: P10023, 2021



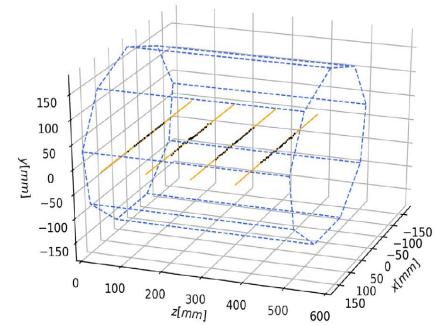


https://doi.org/10.48550/arXiv.2006.08562 Huirong Oi

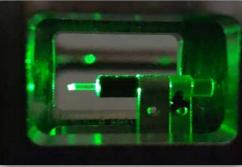
Status of TPC in LCTPC

- GridPix detector have moved from Timepix to Timepix3 ASICs. Tests with quad devices have been successfully done under B=1.0T at DESY in 2021 and 2022.
- Very high detection efficiency results in excellent tracking and dE/dx performance. Timepix4 development is ongoing.
 - All results showed that **a pixel TPC is realistic.(**~10⁶ events **)**

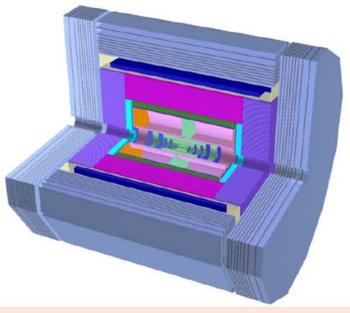
NÌM A535 (2004) 506-510 NIM A845 (2017) 233-235


Huirong Oi

CEPCTPC prototype R&D efforts and results


- **CEPC TPC detector prototyping roadmap:**
 - From TPC module to TPC prototype R&D for Higgs and Tera-Z
- Achievement so far:
 - IBF × Gain ~1 @ G=2000 validation with a hybrid TPC module
 - Spatial resolution of $\sigma_{r_0} \leq 100 \ \mu m$ and dE/dx resolution of 3.6%
 - FEE chip: reach ~3.0mW/ch with ADC and the pixelated readout R&D

Status of TPC in CEPC ref-TDR 1


- The CEPC study group is in process to produce TDR of a reference detector(ref-TDR) by June 2025, aiming mainly for domestic endorsement at one IP of the accelerator.
- CEPC community will **continue to aligned the technologies**, and decide the final detectors within the CEPC international collaborations.

Date	Actions and/or Expectations	
Jan 1, 2024	Start the process by comparing different technologies	
Jun 30, 2024	Baseline technologies, general geometric configuration and key issues are decided	
Oct 31, 2024	Discuss the ref-TDR at the CEPC workshop, report progresses to the CEPC IAC	Jianchun Wang's talk in CEPCWS at Hangzhou.
Dec 31, 2024	The first draft of the ref-TDR is ready for internal reviews	
Apr 15, 2025	international review	
Jun 30, 2025	The ref-TDR for ready for public reviews	
Oct 30, 2025	Submit the ref-TDR for publication	

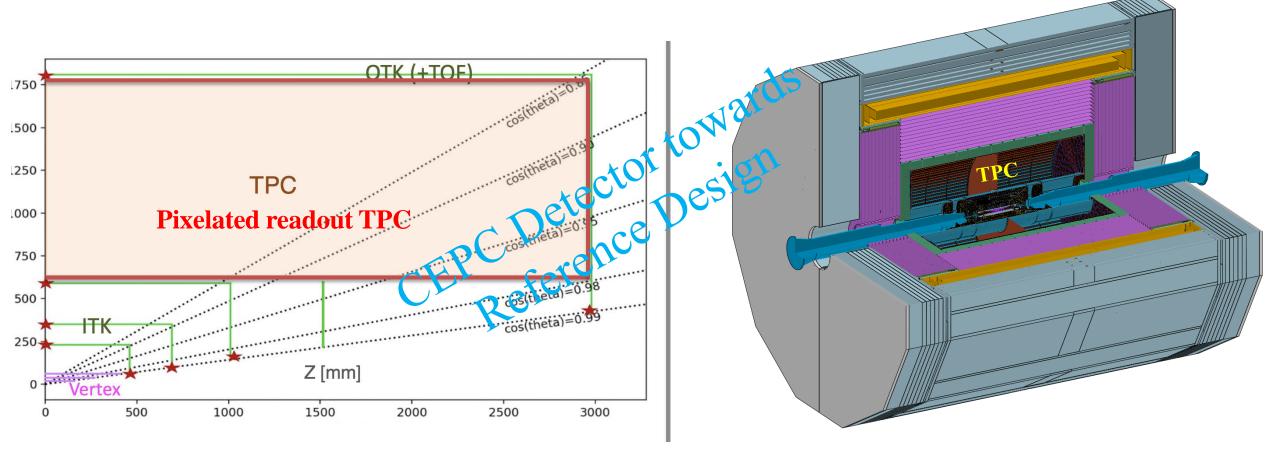
Status of TPC in CEPC ref-TDR 2

• From January 2024, the CEPC community initiated the technical comparison and selection, balancing factors including **R&D efforts, detector performance, cost, power consumption and construction risks**.

System	Technologies	
System	Baseline	For comparison
Beam pipe	Φ20 mm	
LumiCal	SiTrk+Crystal	
Vertex	CMOS+Stitching	CMOS Pixel
Tracker	CMOS SiDet ITrk	
	Pixelated TPC	PID Drift Chamber
	AC-LGAD OTrk	SSD / SPD OTrk
		LGAD ToF
ECAL	4D Crystal Bar	PS+SiPM+W, GS+SiPM, etc
HCAL	GS+SiPM+Fe	PS+SiPM+Fe, etc
Magnet	LTS	HTS
Muon	PS bar+SiPM	RPC
TDAQ	Conventional	Software Trigger
BE electr.	Common	Independent

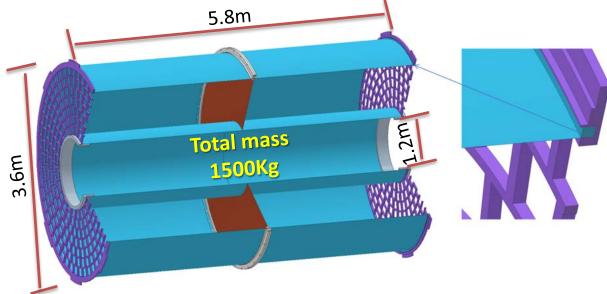
Foundations:

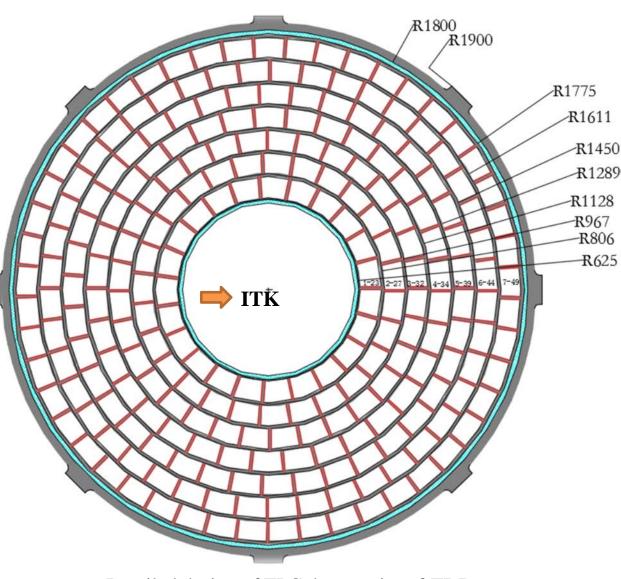
- CEPC Instrumentation R&D
- LHC detector upgrade projects
- other HEP experiments
- progress in HEP worldwide R&D
- development in industry


Status of TPC in CEPC ref-TDR 3

• International Detector Review Committee (IDRC) held its inaugural meeting at IHEP, Oct 21-23, 2024, to review the status and plan of CEPC Ref-TDR.

Baseline design of TPC technology in CEPC ref-TDR

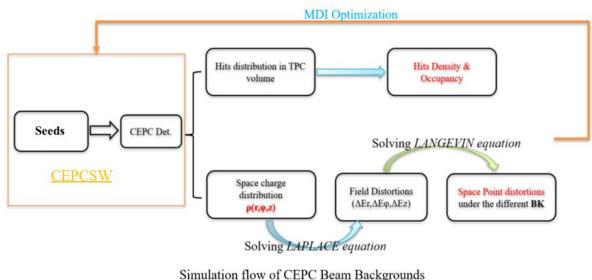

- Tracking system: Silicon combined with gaseous chamber for the tracking and PID
 - Pixelated readout TPC as the **baseline gaseous detector** in the CEPC ref-TDR
 - Radius of TPC from 0.6m to 1.8m



Geometry of the tracking detector system of the CEPC TDR

Parameters of TPC technology in CEPC ref-TDR

TPC detector	Key Parameters
Modules per endcap	248 modules /endcap
Module size	206mm×224mm×161mm
Geometry of layout	Inner: 1.2m Outer: 3.6m Length: 5.9m
Potential at cathode	- 62,000 V
Gas mixture	T2K: Ar/CF4/iC4H10=95/3/2
Maximum drift time	34μs @ 2.75m
Detector modules	Pixelated Micromegas
	otk 📛



Detailed design of TPC detector in ref-TDR

• Pixelated readout TPC R&D for Higgs and Z

Pixelated readout TPC for Higgs and Z

- Space charge in TPC chamber
 - Physics events: $H \rightarrow ss/cc/sb$, $Z \rightarrow qq...(High P_T)$
 - Beam background: (Low P_T)
 - Beamstrahlung (Luminosity related) •
 - Beam-Gas, Beam Thermal Photon, SR...(Single Beam) •
 - Injection background
 - IBF at the MPGDs
- Simulation framework

IP Low PT e+/e-2.9m drift length ~0.58s (for ion) A. Natochii S Beam-Thermal photo Scattering **Beam Lost Particles** Energy Loss > 1.6% (energy acceptance @Higgs) Pair Production **Radiative Bhabha** Scattering Photon BG

Background Sources at Higgs @3T

- Higgs Mode background sources
 - I. Pair production (Luminosity related)
 - II. Single Beam (BGB, BGH, Touschek Scatter...)
 - III. Synchrotron Radiation
 - IV. Injection background
- At present, only types I and II backgrounds have been generated.
 - Pair production background is about **two orders of magnitude higher** than the Single Beam.
- For Higgs, it is necessary to optimize the MDI to shield gamma rays of approximately MeV level.

Bkg type	Space charge density(steady)	Remark	Optimization strategy
Pair + Single Beam	$\rho_{sc0} \sim 0.06nC/m^3$ (R=60cm) 20um, 2.75m Drift Length @ inner radius	Without low $P_T e^{-}/e^+$ (<10MeV) in TPC caused by ~MeV γ	Acceptable
Pair + Single Beam	$\rho_{sc1} \sim 60 \times \rho_{sc0}$	With low $P_T e^{-}/e^+$ (<10MeV) in TPC caused by ~MeV γ	Analysis initial position distribution of \sim MeV γ (Main contributions) and Add shielding

IBF×Gain=1, same primary ion level

Background Sources at Tera-Z @3T

• Tera-Z Mode background sources

- I. Pair production (Luminosity related)
- II. Single Beam (BGB, BGH, Touschek Scatter...)
- III. Synchrotron Radiation
- IV. Injection background


IBF×Gain=1, same primary ion level

- At present, only types I and II backgrounds have been generated.
 - At Z-pole, the Single Beam background loss rate increases, with Single Beam being about one order of magnitude higher than Pair.
 - Taking into account all MeV-level low-energy gamma rays (with types III and IV), the beam background will cause cm-level distortions. It is necessary to optimize the MDI.

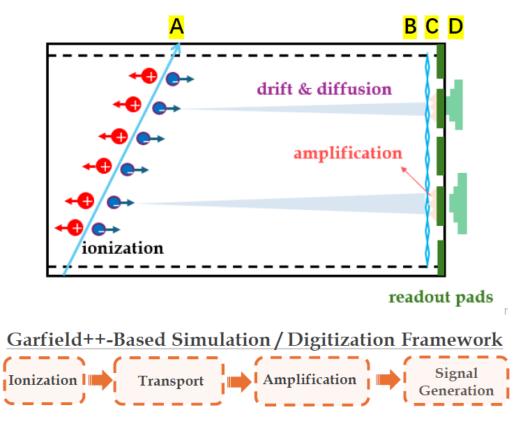
Bkg type	Space charge density(steady)	Remark	Optimization strategy
Pair production	$\rho_{sc0} \sim 0.32 nC/m^3$ (R=60cm) 150um , 2.75m Drift Length @ inner radius	Without low P _T e ⁻ /e ⁺ (<10MeV) in TPC caused by ~MeV γ	
Pair + Single Beam	$\begin{array}{l} \rho_{sc1} \sim 15\text{-}20 \times \rho_{sc0} \\ \textbf{2500um}, \ 2.75m \ Drift \ Length \ @ \ inner radius \end{array}$	Without low P _T e ⁻ /e ⁺ (<10MeV) in TPC caused by ~MeV γ	Loss rate control
Pair + Single Beam	$\rho_{sc2} \sim 500-1000 \times \rho_{sc0}$ ~cm distortion	With low $P_T e^{-}/e^+$ (<10MeV) in TPC caused by ~MeV γ	Loss rate control and ~MeV γ shielding

TPC distortion caused by primary ions

- Radial distortion (Δ_r) is much smaller than azimuthal distortion, almost imperceptible when along the track for most P_T track **IBF×Gain=1, same primary ion level**
 - Azimuthal distortion (Δ_{r_0}) has much serous impact both on high/low P_T tracks
 - The maximum $\Delta_{r_{\varphi}}$ is 20 μ m@Higgs (acceptable)
 - The maximum Δ_{r_0} is 150 μm @Z-pole (need to optimization of MDI)
 - Including Pair + Single Beam

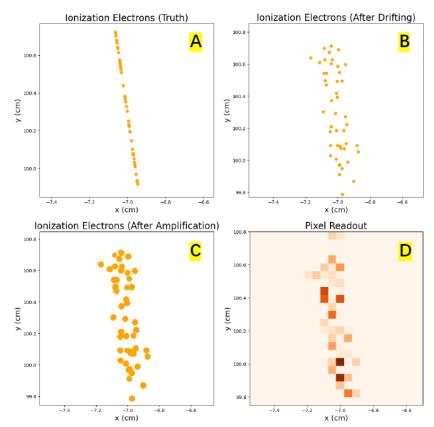
Azimuthal distorti

Low P_T


🔶 Radial distortion

High P_T

Full Simulation of Pixelated readout TPC


Simulation:

- With the full TPC geometry
- Ionization simulated with Garfield++
- Drift and diffusion from parameterized model based on Garfield++

Digitization (Refer to the TPC module and prototype):

- Electronic noise: 100 e-
- Amplification:
 - Number of electrons: 2000
 - Profile of signal size : 100µm

Simulation of TPC detector under 3T/2T and T2K mixture gas

Full Simulation of Pixelated readout TPC – Readout size

simulation studies of PID for the CEPC TPC

Speaker: Dr Guang Zhao (Institute of High Energy Physics (CAS))

- Simulation of the readouts in pixel sizes
 - Actually, TPX3/4 option existing and the power consumption will be optimized.
 - Optimization started in this ref-TDR at IHEP to meet Higgs/Z at 3T.
 - Concerning pixel sizes for a TPC
 - A pixel size of 55 (110) microns is optimal; one can profit from cluster counting and high precision tracking
 - Larger pixel/pad sizes have larger occupancies and one should question whether they can handle the very high beam-beam rate

Peter's comment in CEPCWS at Hangzhou.

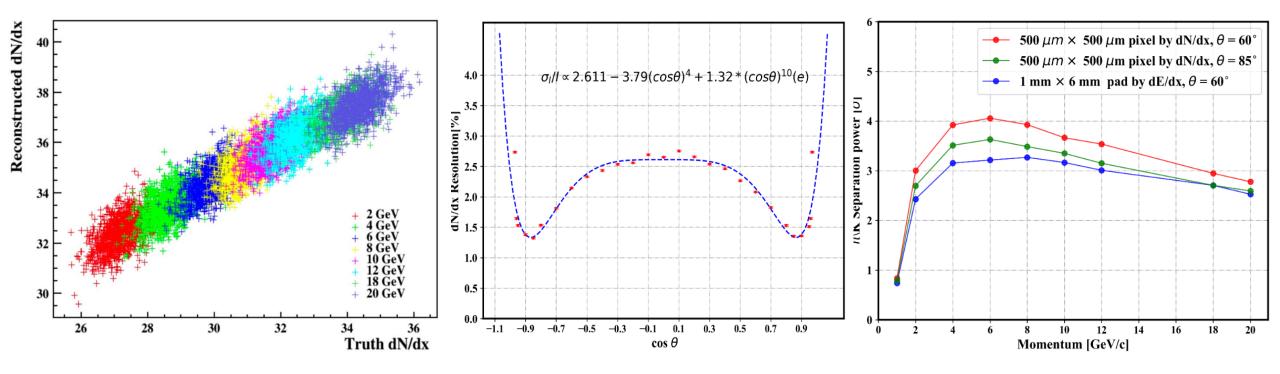
17:10

Pixel Readout Pixel Readout Pixel Readout Ionization Electrons (After Drifting) 100.8 100.6 y (cm) 100.2 100.7 100.0 100.0 1000 -7.4-7.2 -7.0 **Optimization of readout size** x (cm) -7.0 -6.0 x (cm) x (cm) **Balancing of performance, cost** power consumption, etc. Huirong Oi

Pixel size = 110 um

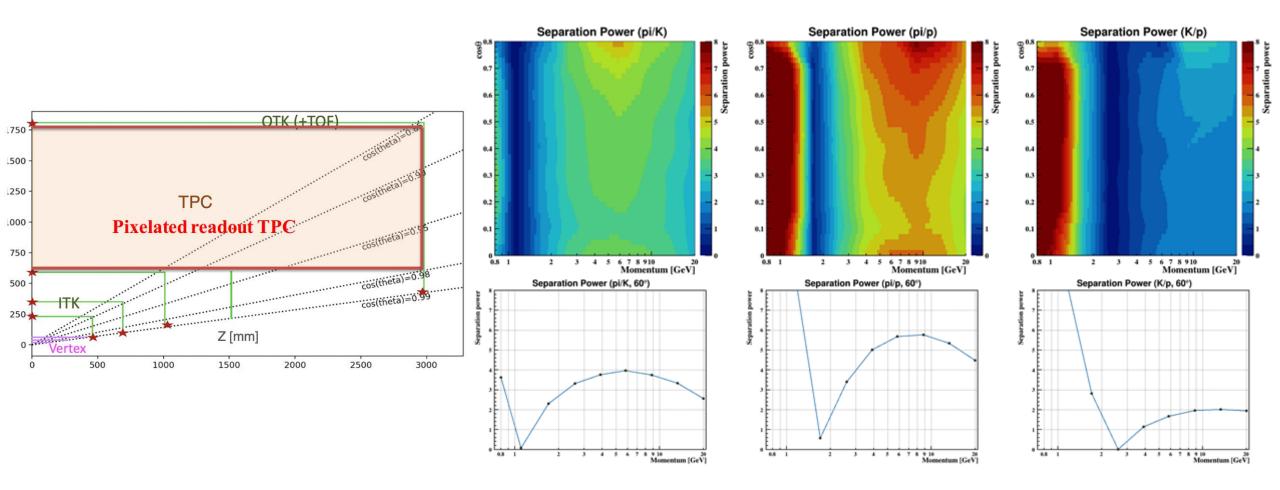
Pixel size = 300 um

Pixel size = 500 um


Reconstruction:

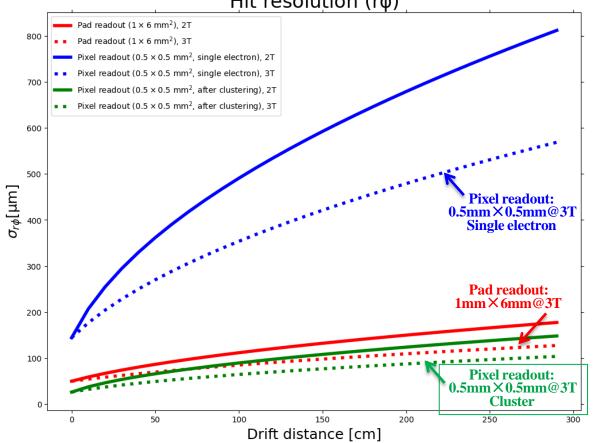
- Reconstruction by counting the number of fired pixels over threshold
- Reconstruction with good linearity and reliability

Preliminary PID performance:


 π/k separation power simulation with different momentum

Separation power:
$$\frac{|\mu_A - \mu_B|}{\frac{\sigma_A + \sigma_B}{2}}$$

Full Simulation of Pixelated readout TPC – PID performance


- Performance of the pixelated readout TPC
 - Simulation of π/K , π/p , and K/p separation power with varying momentum and $\cos\theta$

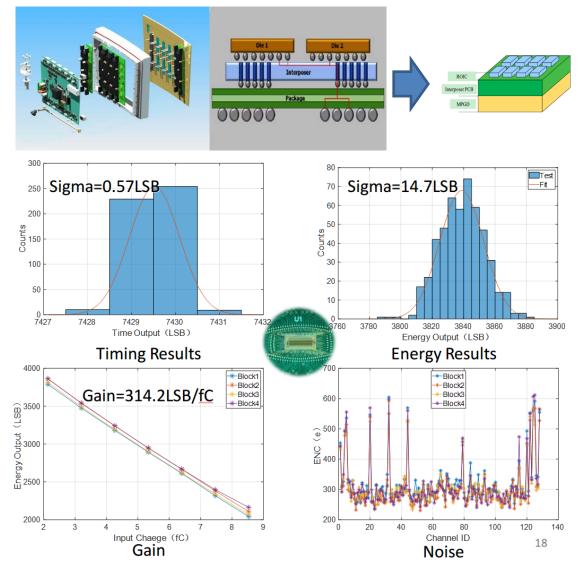
Full Simulation of Pixelated readout TPC – Spatial resolution

Estimation of the spatial resolution using pixelated readout.

- The granularity readout and the transverse diffusion are also taken into consideration..
- TPC can operates effectively at 3T B-field.
- Pixelated readout TPC can achieves superior spatial resolution at 3T compared to 2T. Hit resolution (rφ)

Pad readout:

$$\sigma_{r\phi}^{\rm pad} = \sqrt{(\sigma_{r\phi0}^{\rm pad})^2 + \sigma_{\phi0}^2 \sin^2(\phi_{\rm track}) + L \frac{D_{r\phi}^2}{N_{\rm eff}} \sin(\theta_{\rm track})}$$

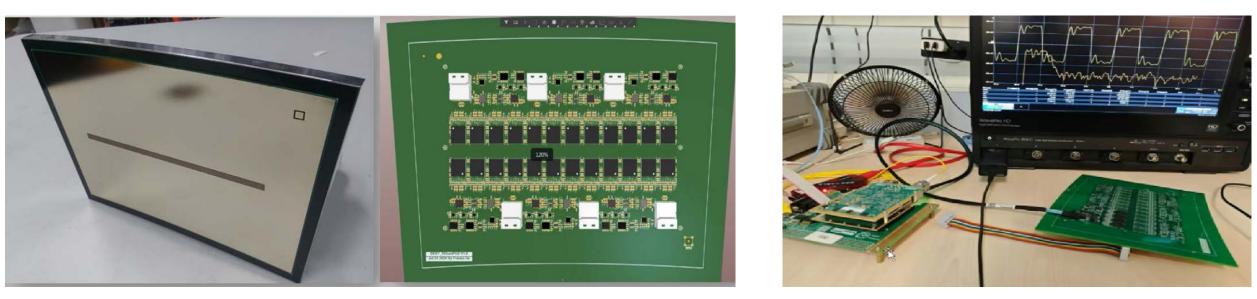

Pixel readout:

$$\sigma^{\rm pixel}_{r\phi} = \sqrt{(\sigma^{\rm pixel}_{r\phi0})^2 + LD^2_{r\phi}}$$

Full Simulation of Pixelated readout TPC – TEPix with $500 \mu m \times 500 \mu m$

- Pixelated Readout Electronics: TEPix development
 - Multi-ROIC chips + Interposer PCB as RDL
 - Four-side bootable
- TEPix: Low power Energy/Timing measurement
 - Low power consumption: 0.5mW/ch@2nd Chip
 - Timing: 1 LSB(<10ns)
 - Noise: 300e- (high gain)

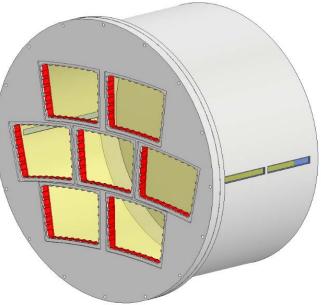
2.2mm		
	Parameter	Spec
	Number of channels	128
	Power Consumption	Analog<30mW
		Digital<30mW
	ENC	~300 e(high gain)
	Dynamic Range	25fC(high gain)
		150fC(low gain)
	INL	<1%
	Time Resolution	<10ns


FEE ASIC: TEPIX—Test Results in May

5.6mm

Validation and commissioning of TPC prototype

- R&D on Pixelated TPC readout for CEPC TDR.
 - ASIC chip developed and 2nd prototype wafer has been done and tested.
 - The TOA and TOT can be selected as the initiation function in the ASIC chip
- Beam test of the pixelated readout TPC prototype in preparation. (April –May , 2025)


Photos TPC modules assembled for the beam test

Work plan

- Short term work plan (**before June, 2025**)
 - Optimization of TPC detector for CEPC ref-TDR
 - Prototyping R&D and validation with the test beam
 - mechanics, manufacturing, beam test, full drift length prototype
 - Performance of the simulation and Machine Learning algorithm
- Long term work plan (**next 3-5 years**)
 - Development of TPC prototype with low power consumption FEE
 - Collaboration with LCTPC collaboration on beam test
 - Development of the full drift length prototype
 - Drift velocity. Attachment coefficient, T/L Diffusion, etc.

Milestones achieved	Before June, 2025	Beyond TDR
Ion backflow suppression	IBF×Gain<1 (Gain=2000)	Graphene technology
Pixelated readout prototype	Validation with beam test	Prototype with Multi-modules
Power consumption ASIC	~100mW/cm² (60nm ASIC)	Optimization 330µm - 500µm
PID resolution	3% (dN/dx)	<3% (dN/dx)
Material budget (barrel)	Carbon Fiber	Full size prototype

- In LCTPC collaboration, TPC detection technology R&D using the pad readout towards the pixelated readout for Higgs and Z run at the future e+e- collider.
- Pixelated TPC is chosen as the baseline gaseous tracker in CEPC ref-TDR. The simulation results show that both of PID performance and the momentum resolution are good. Validation with TPC prototype in preparation before TDR.
- Synergies with CEPC/DRD1/FCCee/EIC/LCTPC allow us to continue R&D and ongoing with the significant international collaboration. All of contributions will input to CEPC ref-TDR in next few months.

Many thanks!