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upgrade: status and plans

Piotr Podlaski
Przemyslaw Adrich



Hadron production in hadronrnucl U

E -,‘_‘

SUISSE _ _._.2

ANC
%




Beam counters
and BPDs

vD |
Beam, ‘H'N'I

Target S3

Current setup

~13m

Vertex magnet

__ 4

VTPC-1

—

GAP
TPC

1l

S4

Vertex magnet

MTPC-L

__4

VTPC-2

—

MTPC-R

ToF-L

ToF-F

I IGRC
S5

4

FTPC-2/3

FPSD




Current setup - tracking

* Silicon pixel detector based on
ALPIDE sensors for precise vertexing

* 9 Time Projection Chambers
* 3 in magnetic field

e Using legacy ALICE TPC readout
electronics (PASA+ALTRO)

e ~200k readout channels
 Max event rate ~1.2 kHz (Pb+Pb)




Motivation for new detector topology

« Azimuthal angle correlation of charm hadrons produced in heavy ion collision at SPS
energy (on average less than c-cbar pair produced) is expected to be sensitive to space
correlation (locality) at their origin

* Directly accessible in NA61/SHINE++ via neutral D mesons.
* High event rate — beyond 10 kHz — is necessary, up to 1000 charged tracks per event
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Plans and needs

* Magnetic spectrometer with fast Silicon tracking
detector for precise primary and decay vertex
reconstruction

* Silicon supplemented with large area gas
detectors — further tracking to improve
momentum resolution
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General concepts of charm tracker
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Large area detectors

e First idea:
- Two layers
— Up to 70cm x 200 cm in
Size

- Readout and detector
topology optimized for track
density, number of channels
and beam exposure

- Material budget: as low as
possible
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MC simulations to estimate track
densities

Pb+Pb @ 150 A GeV, 0-20% central in AMPT model

Target at Z=-435 cm (inside vertex magnet 1, at the most upstream location
where B>1.5T)

Charged track number histogrammed in 3D with 1x1x1 cm3 bins for 20k
events

Mean charged track density in each bin calculated by dividing the number of
charged tracks in the bin by the total number of events,

Track density maps drawn at XY planes at various Z distances from the target
Plots presented at Z = +50, +100 and +200 cm downstream from the target
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Per-event particle densities

50cm behind the target, 0-20% central Pb+Pb
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Per-event particle densities

* High intensity Pb beam will pass through x=y=0

* Magnetic field orientation and Si tracker topology:
- Detectors can have gap around x=0

- Lower particle density and detector occupancy (by
factor ~5)

- Very conservative gap presented in the following slides
— can be increased without big harm to the acceptance
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Per-event particle densities
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Two-hit resolution

* We want to resolve two hits in the detector planes for
central Pb+Pb interactions

* Values shown on histograms are ideal for this purpose

* For example: in the closest location we would need ~1mm
pixels close to the beam (~10 tracks per cm2 by average)

* Other topologies to be considered for outer regions to
optimize electronics fan-out and cost



Scaling to get total flux

* Plots presented on previous slides show charged
particle flux per cm? per central Pb+Pb event

* To convert to total flux of particles per cm? per second:
— Take into account all Pb+Pb interactions, not only central

ones
- Assume 5% of interactions in the target and 200 kHz Pb
beam
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Total charged particle flux

* Up to 5*10* MIP/cm?/s In the inner regions of the
detectors

* On top of that, presence of some high-Z
fragments Is also possible — MC studies are
planned



Material budget - baseline

Momenta reconstructed with Kalman Filter using
hits in detectors as well as position of secondary

vertex known from MC.

Kaon momentum uncertainty. Rec Vs Simdp/p=(p_. -p_)p s [%]
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Pion momentum uncertainty. Rec Vs Sim dp/p = (ps‘m - p’ec)/pSIm [%]
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D° mass reconstructed using particle ID from MC
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Sources of uncertainty:
* multiple scattering in the target, silicon and Helium atmosphere,

* intrinsic position resolutions.
To account for finite detector resolutions,

positions of MC hits were smeared by adding
a normally distributed random number:
Secondary vertex: ¢ = 10 um

Silicon: 0 =5 um

GEM: 0 =100 pum



Material budget and resolution

D’ reconstructed invariant mass

. hinvariantMass
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Summary and timeline

* Initial gathering of necessary information to prepare proposal for such detector
has started

* We have first estimations of particle fluxes

* Two (VERY preliminary) scenarios in terms of timeline:
— Installation during LS3, to be ready for run 4
- Installation 2 years into run 4

* If you have suitable detector technology and want to implement it in
NA61/SHINE++, please contact:

- Bartosz.Maksiak@cern.ch
- Przemyslaw.Adrich@cern.ch


mailto:Bartosz.Maksiak@cern.ch
mailto:Przemyslaw.Adrich@cern.ch

Thank you



Backup



Case 2: silicon ,VD” + GEMs

Spectrometer geometry

*  World Material = Helium
* Target at Z=-435 cm

* Silicon: 4 stations, 5 cm separation (see fig.),
starts at Z=-430 cm ( 5cm downstream target)
9 sensors per stave,
1, 2, 2, 3 staves per station per arm
7 mm central gap for the beam,

* GEM1" at Z=-380 c¢cm (middle od vertex magnet 1)
* GEM2" at Z=-325 cm (1.1 m downstream target)
* GEM dimensions (xy) 2x0.7 m?2

* In the Luminance, GEMs were tentatively
implemented as position sensitive volumes of Copper
of different thickness (50 um to 1 mm)

Sources of uncertainty:

* multiple scattering in the target, silicon and Copper,

* intrinsic position resolutions.

33

 GEM2”
(copper)

Silicon ,VD like”
(same as in Case 1)

,GEM1”
(copper)

To account for finite detector resolutions, positions of MC hits
were smeared by adding a normally distributed random number:
Secondary vertex: ¢ = 10 um
Silicon: 6 =5 um

,GEM”: 0 =100 um




Tracker material and reconstruction
resolution

,Detector” | Thickness Fraction of Momentum D%invariant mass
material [mm] radiation length | resolution [%] | resolution (o,,) [MeV]
[%]
Helium 1 2E-5 0.7 12
Copper 0.2 1.4 0.8 13
Copper 1 6.9 1.1 17
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