Measurements of Penning transfer ratios

3rd DRD1 collaboration meeting

Stefan Roth, Nick Thamm

Online - 10.12.2024

Gas Monitoring System @ ND280 / RWTH

- Two identical chambers for supply and return gas
- Sequential measurement of drift velocity and gain

Measurement quantities

	GasDD	Home Abo	out Citations	Imprint	integr contact o	ls			· Wth
	[0]	≤ E [V/cm] ≤	1000000		1. Select ga	ases	2. Select a gas mixtu	е	3. Select a run add
					× Argon (Ar)	Methane (CH4)	×Ar_95.00_CH4_5.00 (P5)		×[magboltz 11.7] Ar-CH4-P5
	0	≤ p [mbar] ≤	11000	0	Submit Gases	Strict	Submit Mixture		Add Run to List
	0	≤ B[T] ≤	10	0		•			Jacob Salar
	-						Share Runs		Remove Run from List
nload a P Style atter er Size	ython terr	iplate for impo	rting and work	king with the	• data •	x-axis Variable E-T/p [V/cm-K/mbar] y-axis Variable v_z [µm/ns]	Share Runs	x-axis Type Linear y-axis Type Linear	Remove Run from List
vnload a P t Style atter rker Size tot Data	ython tem	iplate for impor	rting and work	king with the	+ data 	x-axis Variable E-T/p [V/cm-K/mbar] y-axis Variable v_z [µm/ns]	Share Runs	x-axis Type * Linear y-axis Type Linear	Remove Run from List
vnload a P t Style atter fker Size ot Data	ython terr	iplate for impor	ting and work	king with the	• data •	x-axis Variable E-T/p [V/cm-K/mbar] y-axis Variable v_z [µm/ns]	Share Runs	x-axis Type Linear y-axis Type Linear	* * * * * *
vnload a P t Style catter rker Size lot Data 80 - 70 -	ython terr	iplate for impor	ting and work	king with the	• data	x-axis Variable E-T/p [V/cm-K/mbar] y-axis Variable v_z [µm/ns]	Share Runs	x-axis Type Linear y-axis Type Linear	Ar. 95.00, CF4_3.00, JCH10_2.00 (T2K-gas): [msgboltz 11.71 T2Kgas-H20 Ar. 95.00, CF4_3.00, JCH10_2.00 (T2K-gas): [msgboltz 13.5 P0 Ar. 95.0CF_3.00, JCH10_2.00 (T2K-gas): [vd_JMM201 3.5. P0 Ar. 95.0CF_3.00, JCH10_2.00 (T2K-gas): [vd_JMM201 9.15. P0 Ar. 95.0CF_3.00, JCH10_2.00 (T2K-gas): [vd_JMM201 9.5. P0 Ar. 95.0CF_3.00, JCH10_2.00 (T2K-gas): [vd_JMM201 9.5. P0 Ar. 95.0CF_3.00, JCH10_2.00 (T2K-gas): [vd_JMM201 9.5. P0 Ar. 95.0CF_3.00, JCH10_2.00 (T2K-gas): [vd_JMM201
wnload a P t Style catter rker Size lot Data 80 70 60	ython terr	Iplate for impor	rting and work	king with the	• data	x-axis Variable E-T/p [V/cm-K/mbar] y-axis Variable v_z [µm/ns]	Share Runs	x-axis Type Timear y-axis Type Linear	 Ar_95.00_CF4_3.00_IC4H10_2.00 (T2K-gas): [magboltz 11.7] T2Kgas-H20 Ar_95.00_CF4_3.00_IC4H10_2.00 (T2K-gas): [vd_MM201 3.5_P9] Ar_95_CF4_3.00_IC4H10_2.00 (T2K-gas): [vd_MM201 3.5_P9] Ar_95_CF4_3.00_IC4H10_2.00 (T2K-gas): [vd_MM201 Ar_95.00_CF4_3.00_IC4H10_2.00 (T2K-gas): [vd_MM201 Ar_95.00_CF4_3.00_IC4H10_2.00 (T2K-gas): [vd_MM201 3.5_IPT3K-gas massurement, H20 < 10 ppm, O2 < 1 ppm
vnload a P t Style aatter rker Size tot Data 80 70 60 50	ython terr	iplate for impor	ting and work	cing with the	• data	x-axis Variable E-T/p [V/cm-K/mbar] y-axis Variable v_z [µm/ns]	Share Runs	x-axis Type v Linear y-axis Type v Linear	Ar. 95.00_CF4_3.00_JC4H10_2.00 (f2K-gas): [magboltz 11.71 T2Kgas-H20 Ar. 95.00_CF4_3.00_JC4H10_2.00 (f2K-gas): [magboltz 11.71 T2Kgas-H20 Ar. 95.00_CF4_3.00_JC4H10_2.00 (f2K-gas): [magboltz 11.71 T2Kgas-H20 Ar. 95.00_CF4_3.00_JC4H10_2.00 (f2K-gas): [magboltz 11.71 T3Kgas-H20 Ar. 95.00_CF4_3.00_JC4H10_2.00 (f2K-gas): [magboltz 11.71 T3Kgas-H20 Ar. 95.00_CF4_3.00_JC4H10_2.00 (f2K-gas): [magboltz 11.71 T3Kgas-H20 Ar. 95.00_CF4_3.00_JC4H10_2.00 (f2K-gas): [magboltz 1.71 T3Kgas masurement, H20 < 10 ppm, 02 < 1 ppm
winload a P t Style catter rker Size lot Data	ython terr	Iplate for impor	ting and work	cing with the	• data	x-axis Variable E-T/p [V/cm-K/mbar] y-axis Variable v_z [µm/ns]	Share Runs	x-axis Type Linear y-axis Type Linear	Ar. 95.00_CF4_3.00_ICH10_2.00 (T2K-gas): [magboltz 11.7] T2Kgas-H20 Ar. 95.00_CF4_3.00_ICH10_2.00 (T2K-gas): [vd_MM201 3.5, P9] Ar. 95. CF4_3.00_ICH10_2.00 (T2K-gas): [vd_MM201 3.5, P9] Ar. 95. CF4_3.00_ICH10_2.00 (T2K-gas): [vd_MM201 3.6, P1, H20 < 50, CF4_3.00_ICH10_2.00 (T2K-gas): [vd_MM201
winload a P t Style catter rker Size kot Data	ython terr	Iplate for import	ting and work	cing with the	• data	x-axis Variable E-T/p [V/cm-K/mbar] y-axis Variable v_z [µm/ns]	Share Runs	x-axis Type Tildear y-axis Type Linear	 Ar_95.00_CF4_3.00_IC4H10_2.00 (T2K-gas): [magboltz 11.7] T2Kgas-H20 Ar_95.00_CF4_3.00_IC4H10_2.00 (T2K-gas): [vd_JMM201 3.5_PP] Ar_95_CF4_3.00_IC4H10_2.00 (T2K-gas): [vd_JMM201 3.5_PP] Ar_95_CF4_3.00_IC4H10_2.00 (T2K-gas): [vd_JMM201 3.5_PP] Ar_95_CF4_3.00_IC4H10_2.00 (T2K-gas): [vd_JMM201 3.5_PP] Ar_95_C74_3.00_IC4H10_2.00 (T2K-gas): [vd_JMM201 3.5_PP] Ar_95_C74_3.00_IC4H10_2.00 (T2K-gas): [vd_JMM201 3.5_PP] Ar_95_C74_3.00_IC4H10_2.00 (T2K-gas): [vd_JMM201 Ar_95.00_CF4_1.000 (P10): [magboltz 11.9] Ar-CH4-H PGMC Ar_95.00_CF4_5.00 (P5): [magboltz 11.7] Ar-CH4-P5

- Only occurs in gas-mixtures
 Also due to contaminations
- Ionization levels of admixture lower than energy level of excited state
- Complicated due to various states:
 - Rotational
 - Vibrational

...

5

0.6 eV $[C_3H_8]$ C_3H_8 (ground) (ground)

https://doi.org/10.1039/C6AN01352J

Ionization: $P^+ + A \rightarrow P^+ + A^+ + e^- + (n \cdot e^-)$ Penning ionization: $A^* + B \rightarrow BA^* \rightarrow A + B^+ + e^-$ Associative Penning ionization: $A^* + B \rightarrow BA^* \rightarrow BA^+ + e^-$ Surface Penning ionization: $A^* + S \rightarrow A + S^+ + e^-$ (Auger Deexcitation)

> Jesse ionization: $A^* + B \rightarrow A + B + \gamma \rightarrow A + B^+ + e^-$ Surface Jesse ionization: $A^* + S \rightarrow A + S + \gamma \rightarrow A + S^+ + e^-$ (Photon feedback)

Modified gas gain: $G = exp \int_{r_c}^{r_a} \alpha_{pen} E(r) dr = \frac{I}{I_0}$ $\alpha_{pen} = \alpha \left(1 + r_{pen} \frac{f^{exc}}{f^{ion}} \right)$ Detector effects: $G_T = G + \beta G^2 + \beta^2 G^3 + ... = \frac{G}{1 - \beta G}$

Penning effect

- Not predictable (as far as I know)
- Depends on:
 - Type of admixture
 - Amount of admixture
 - Pressure of gas
- Useful model for binary gas mixtures
- Could not yet find estimations for tertiary gas mixtures
 - T2K-gas

•••

Tissue equivalent gases

https://doi.org/10.1016/j.nima.2014.09.061

Plan to measure Townsend coefficient / Penning effect

Measurement of first Townsend coefficient

- Calculate from current to gas gain amplification
- Match gas gain to first Townsend coefficient
- Compare to simulation

Gas ionization

Measurement setup

- Guard ring to remove leakage current
- Enclosure to shield against external influences
- Fe55 provides ionization
 - 370MBq activity
 - I0 ~ O(10pA)
- HV: 0-8000V Source holder • P: 0-1.6bara Feedthrough gas out Isolator 55Fe I: 0-21mA (but <21nA) source Mylar foil **Protection circuit** Picoamperemeter 6cm length 9 **High-voltage** Guard power supply 1cm diameter Isolator gas in 25µm/80µm wire Shielded enclosure 17

Measurement setup - Field simulation

- Electric field very sensitive to radius of diameters of setup
 - Most importantly wire-diameter!
- Source is inside of gas volume
- FEM simulation of setup crossection
 Estimate effect of radiation window on field

$$S(r) = \frac{V}{p r \ln(r_c/r_a)}$$

Wire diameter

- Need very precise knowledge of wire diameter
- Use scanning electron microscope images for measurement
 - 1. Load "clean" image
 - 2. Find edges
 - 3. Determine distance between edges

Measurement procedure

- 1. Prerequisites
 - 1. Flush gas for extended time periods
 - 2. Settle temperature
- 2. Measurement
 - 1. Ramp to voltage for gain
 - 2. Soak at high voltage for stabilization
 - 3. Ramp down voltages in intervals/steps
 - 4. Once at 0V, ramp up again in steps
 - 5. Repeat cycle X times
- 3. Go to step 1. with new gas

Estimating IO (Simulation) - Irradiation simulation

- Estimate acceptance of detector:
 - Decays into tube solid angle
- Approximate number of interacting Fe55 photons
- Simulate amount of e- / interaction

I0 = Activity * acceptance * W * (Fe55 int. probability) * e = ~20pA G = I / I0

*I*₀=0.71 nA @ 10.0k iterations, 370.0MBq ⁵⁵*Fe*, W=200

Simulation

- Magboltz / pyboltz
 - Programs to simulate electron transport in gas mixtures (monte-carlo)
 - Driftvelocity
 - Diffusion (longitudinal / transverse)
 - Gas gain (Townsend-coefficient / attachment)
 - <u>https://magboltz.web.cern.ch/magboltz/</u>
 - Actively maintained
 - Included into Garfield++
 - <u>https://github.com/UTA-REST/PyBoltz</u>
 - Not actively maintained?
- Custom scripts to run simulations in batch-mode on RWTH physics cluster
- Not possible to predict penning transfer

Simulation – Magboltz/Pyboltz

Numerical simulation of electron swarm parameters

Measurement results

Garfield comparison plot - Sagox18@1.0atm

Conclusion and outlook

- Aachen gas database is a useful tool for operating and developing gaseous detectors
 - Results are traceable and publicly available
- New setup constructed to measure gas gain curves and qualify Penning effect transfer ratios
- First results agree with findings of other groups for various gases
 - P10
 - Sagox18
 - Pure CO2

Outlook

- Include UV-LED in future setup for better adjustability
 - Need to check interactions with uv radiation
- Try measurement on planar geometry or "in-situ" on Micromegas detector

Thank you!

