# Micro gas recirculation systems

About small gas recirculation systems for laboratory applications and Grafana monitoring

EP-DT-FS | December 10, 2024

Speaker: Pieter Vanslambrouck



Micro recirculation systems | EP-DT-FS

### **Motivation**

Small laboratory gas detector setups →Typically flushing with gas or no flow at all

Proposal: gas recirculation system

- Recirculation?
  - Gas is pumped around in closed loop
  - To reduce gas consumption
- Requirements
  - For detector volumes up to 100L
  - Compact and portable: fits on a desk / in a box
  - Modular: every setup has different needs (optional purifier, flow monitoring, analyzers etc.)
  - Starting price ~ O(10<sup>3</sup>) CHF
  - Easy to build, use and maintain
  - $\circ$   $\quad$  Simple control and monitoring





# **Description of modules**





- Gas Supply Module  $\rightarrow$ 
  - **Purifier Module**
  - Gas Analysis Module
  - Pump Module
- Exhaust Module

- Controlled through an electrovalve with a rotameter for fine-tuning.
- $\rightarrow$ Optional module to remove O2, H2O.
- Sensors for monitoring the gas quality, e.g. dewpoint, O2.  $\rightarrow$
- Micro-pump remotely controlled providing the recirculation.  $\rightarrow$
- $\rightarrow$ Bubbler connected at the output of the detector.



# Component selection: pump

Many micropumps were considered

- Xavitech P200 & P1500 range
- KNF NMP range

However, these pumps are not suitable due to intake of air (i.e. humidity/N2/O2). Reasons:





(bad seal)



Pump body (bad seal and/or diffusion through membrane)

Plastic pipes (diffusion)

& metal pipe

**KNF N 86** 

# Setup for pump validation

Flushing box (can be closed with lid) with pump and RH sensor





# Existing micro recirculation setups in production

Installation at Science Gateway for Spark Chambers (2023)



Installation for EEE project for MRPCs (2024)



Installation for Picosec Micromegas detector for GDD group (2024)



# Data flow

Electronics for readout and control

- Raspberry Pi
- <u>Widgetlords</u> I/O boards
  - Pi-SPi-8AI+ for analog inputs (voltage & current)
  - Pi-SPi-2A0 for analog output signals (voltage & current)
  - Pi-SPi-8KO for relay output signals

#### Software

- Node-RED: graphical programming tool
- InfluxDB: time-series database
- Grafana: visualization tool





### Node-RED

Graphical programming tool

- Browser-based
- Easy to use
- Open-source

Built-in plugins for

- Interfacing with I/O boards
- Uploading sensor data to InfluxDB





### Grafana

Open-source visualization platform

- Many different types of panels: graphs, stats, gauges, heatmaps etc.
- Powerful query functionality (templates)
- Supports annotations, alerting
- Compatible with many data sources
- Easy user management

The IT department provides services that make it very easy to set up Grafana:

#### https://grafana.docs.cern.ch/







### Conclusion

We realized several small gas recirculation systems

- Compact
- Cost-effective
  - Initial investment is paid back through a reduction of gas consumption
- Modular
  - Every system has different requirements
- We received positive feedback on how users interact with the system
  - Grafana monitoring
  - Node-RED control dashboard





### Upcoming Grafana workshop

Next year, we are planning to organize a workshop on how to use Grafana for monitoring.

This involves creating data sources, writing queries, configuring the visualization, adding <u>alarms</u> etc.

Date: TBD



