

Status Report of the Setup for Ageing and Degradation Studies of MPGDs at the São Paulo University

Willian Wallace Ribeiro Alves da Silva¹, <u>Thiago Badaró Saramela</u>¹, Eduardo dos Santos Palermo¹, Vitor Ângelo Paulino Aguiar¹, Gustavo Pamplona Rehder², Tiago Fiorini da Silva¹

¹ Instituto de Física da Universidade de São Paulo
² Escola Politécnica da Universidade de São Paulo

Contribute to the study of **aging and degradation of MPGDs** through **controlled experiments** and **high-sensitivity surface analyses**, enabling the investigation of **processes in their early stages**.

This approach aims to provide insights that benefit both **future** and **current** experiments, particularly the **ALICE-TPC**.

Importance of aging for future experiments

A better understanding of longevity and radiation hardness is highly necessary for current and future experiments in HEP.

1) Large ton dual-phase (PandaX-4T, LZ, DarkSide -20k, Argo 200k, ARIADNE, ...) 2) Light dark matter, solar axion, Onbb, rare nuclei&ions and astro-particle reactions, Ba tagging) 3) R&D for 100-ton scale dual-phase DM/neutrino experiments

Adapted from: R&D Roadmap of the European Committee for Future Accelerators (ECFA) 2021

Importance of aging for future experiments

Growing demand for information regarding the robustness of materials and susceptibility to aging of MPGDs

3.6. RDC 6: Gaseous detectors

- Advance gas TPC readout to performance limits, enabling new experiments: maximize sensitivity by achieving 3D single electron counting, minimize background by developing radio-pure MPGDs, develop matching, highly scalable front-end electronics and readout systems, develop on-detector AI/ML and triggerdriven, highly multiplexes readouts.
- Advance MPGDs for high-background environments: develop cylindrical and exotic-shape tracking layers, develop picosecond timing layers, improve radiation hardness, rate capability, robustness against sparking and aging.
- Establish MPGD development, prototyping and production facility in the US.

Previous results on GEM surface analysis

HEPIC

- Surface analysis revealed polyimide residuals and by products deposits on the electrode surface
 - Possible correlation with sparks
- Chromium diffusion into the electrodes
 - Possible thermal anisotropy
- Migration of polyimide additives
 - Possibly due to electric fields

School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

3rd DRD1 Collaboration Meeting - Dec. 2024

ity (counts)

·10⁴ b

2

0

The setup for aging studies of MPGDs

- Topics to study:
 - Influence of gas mixture
 - The role of humidity in the classical aging process
 - Evaluate possible release of hydrogen content molecules from the polyimide and their influence in the aging process
 - Exploit high-sensitivity surface analysis techniques to study early stages of aging and degradation

The setup for aging studies of MPGDs

- Setup target the as clean as possible environment for GEM degradation
 - Polished stainless steel chamber
- Reduced humidity levels
 - Teflon tubing
- Gas flow, mixtures, and pressure controls for flexibility of test
 - Four mass flow meters and a pressure controller
- Gas composition monitoring with ppm level of impurity traceability
 - Mass spectrometry for gas analysis at the ambient pressure

The setup - the degradation chamber

Stainless steel chamber

- Clean ambient and avoid degassing.
- Inlet/Filtering Chamber
 - Filed with purifying materials.
 - Removal of eventual H₂O and O₂ contamination.
- Outlet/Monitoring chamber
 - Environmental sensors:
 - Temperature and pressure.
 - Gas quality monitoring:
 - H₂O, O₂ and H₂.
- Both attached to the GEM chamber
 - To avoid tubes.

The setup - the degradation chamber

The setup - gas flow and pressure control

- Gas flow controller:
 - Model: F-201CV-500-RBD-33-K
 - Gas volume control capability:
 - 0,16 ml_n/min 25 l_n/min
 - Operating pressure: Vacuum 64 bar
 - Seals: Kalrez[®](FFKM)
- Pressure controller:
 - Model: P-702CV-1K1A-RBD-33-K
 - Pressure control capability: 0,35 – 1,1 bar
 - P-max: 3,1 bar
 - Burst pressure: 4,2 bar
 - Back pressure control

Project with contributions from:

Willian Wallace Ribeiro Alves da Silva (DR-CNPq) Eduardo dos Santos Palermo (MS-CNEN) Renan Ferreira de Assis (LAMFI-USP)

RS232/FLOW-BUS

(standard RJ45 S(F)TP-cal

Loart to connect a module to the ELOW-BUS

bus begin- terminator (consists of a resistor network

a 100 Ohm registo

The setup - gas flow simulations

The flow is not homogeneous in the GEM chamber, effect will be position-dependent?

Poorly renewed (dead volume)

> The choice of inlet and outlet position influence the residence time and dead volume sizes.

The setup - gas content monitoring

Online gas analysis by molecular mass spectroscopy with ppm sensitivity to trace contaminants or material outgas

Technical info:

- Manufacturer: Pfeiffer Vacuum
- Model: OmniStar® GSD 350 O2
- Mass range: 1 200 amu
- Operating temperature: 10 40°C
- Contribution to neighbor mass: <20 ppm
- Min. detection limit.: C-SEM (ppm) <1 ppm
- Max. escape pressure.: 1 atm
- Max. inlet pressure: 1,2 atm
- Filament: Tungsten
- Capilar heating: up to 200 °C

FPIC

Mass spectrometry gas analyzer

Mass spectrometry gas analyzer

*CO and O as fragments of CO₂ by electron impact in the spectrometer.

Mass spectrometry gas analyzer

Simultaneous measurement of all masses

Signal correlation to resolve ambiguities

Mass spectrometry gas analyzer - SEM

Secondary Electron **M**ultiplier

Signal amplification (1000x) to improve detection limit

Mass spectrometry gas analyzer - Mass range

Mass range of **1 to 200 amu**

Enable the detection of large hydrocarbon molecules such as $C_5H_{11}NO$ (101 amu)

Sample production:

- ALICE-TPC GEM foils
 - 3 cm x 3 cm
- Chemical etching and frame gluing in our lab

EPIC

Thermal induced outgassing tests

- Degradation chamber mounted with a 50µm thick kapton window (transparent to infrared)
- Infrared camera to monitor temperature

Heating Tests

Test with 0A current.

Test with 2A current.

Test with 4A current

Test with 5A current.

Conclusions The setup has been commissioned

Perspectives

Outgassing studies (search for hydrocarbons) Production of GEM samples Aging tests followed by surface analysis