Test beam first preliminary results on the GEM- μ RWELL prototypes for ePIC endcap tracking

Elena Sidoretti

University of Roma Tor Vergata and INFN Roma2 - elena.sidoretti @roma2.infn.it

G. Bencivenni, M. Bondì, A. D'Angelo, A. Fantini, G. Felici, M. Giovannetti, L. Lanza, G. Morello, M. Poli Lener, G. Sekhniaidze, L. Torlai

3rd DRD1Collaboration Meeting – December 2024

Electron Ion Collider

The **Electron Ion Collider¹** (EIC) will be built at Brookhaven National Laboratory and is designed to study the **nuclear structure** with an unprecedented precision, shading light on confinement and on the intriguing behavior of QCD in the nonperturbative regime

Colour code: green \rightarrow silicon trackers light blue \rightarrow MPGDs red \rightarrow Time of Flight purple \rightarrow DIRC

ePIC detector tracking – MPGD endcap trackers

The trackers covering the area of the detector with pseudorapidity $|\eta| > 2$ include the Endcap Tracker: two pairs of GEMµ-RWELL disks, one in the leptonic region and one in the hadronic region.

¹R. Abdul Khalek et al. Nuclear Physics A, 1026:122447, 2022.

ePIC MPGD endcaps

The active region of the disks is drawn with an external radius of 45 cm and internal radius of 6 cm (leptons region) or 9.5 cm (hadrons region) and divided in four quadrants. The detector should provide a **time resolution** of 10-20 ns, **low material budget** ($\simeq 1 \% X_0$), **spatial resolution** of 150 µm, **2D readout**, and single detector **efficiency** of 96 – 97% (corresponding to 92 – 94% combined efficiency)

GEM- μ RWELL hybrid ePIC Requirements

- GEM- μ Rwell hybrid configuration has been chosen to have safe operation at a gain larger than 10 000
- 2D strip read-out using a "COMPASS-like" scheme
- 500-600 μm pitch corresponding to a spatial resolution ~150 μm (with 650 μm pitch, in 5 mm drift gap, spatial resolution better than 150 μm has been reached for incident angles up to 30° using CC and μTPC reconstruction methods combined ¹)
- A drift gap larger than 3 mm is compatible with single detector efficiency larger than 96%

L. Shekhtman et al 10.1016/j.nima.2018.11.033

Detector Under Test 2D layout

 $\textbf{GEM-}\,\mu\textbf{RWELL}$

- Active area 100x100 mm²
- Readout à la COMPASS 2D
 - Bottom strip pitch 400 μ m, width 300 μ m
 - Top strip pitch 400 μ m, width 60 μ m
- 6 mm drift gap
- 3 mm transfer gap

Drift gap

 μ **RGroove**¹

On behalf of INFN LNF DDG group

- Active area 100x100 mm²
- Readout 2D
 - Groove width 70 μ m
 - Top width 70/140 μ m
 - Strips as clusters of 2 or 3 grooves top of the amplification stage
 - Final pitch 400 or 420 μ m
- 6 mm drift gap

Y coordinate on the top of the

Х

X coordinate on the PCB

Gas Gain – X Ray gun study

Gas Gain plot for GEM- μ RWELL

 high gain is reached even for low WELL HV

Gas Gain plot for μ RGroove was not performed before the test beam

Test Beam @PS T10 13 -27 November 2024

- **Gas mixture**: Ar:CO₂:CF₄ 45:15:40
- Tracking:
 - hybrid GEM- μ RWELL with 2D Compass like readout and
 - μRWELL with 2D Compass like readout
- Detectors Under Test:
 - 2 hybrid GEM- μ RWELL with 2D Compass like readout
 - 2 μ RGroove with 2D readout

Trackers set-up & backup solutions

The goal was to use two hybrid GEM- μ RWELL as trackers. Since one of the GEM broke during the test beam, one of the trackers was used as a standard μ RWELL with 3 mm gas gap

	GEM- μ RWELL hybrid	μRWELL
Drift field	2.5 kV/cm in 6 mm gas gap	OFF
ΔV_{GEM}	400 V (gas gain ~10)	OFF
Transfer field	4.5 kV/cm in 3 mm gas gap	3.5 kV/cm in 3 mm gas gap (as Drift)
ΔV_{WELL}	550 V (gas gain ~1500)	630 V (gas gain ~8000)
Gas gain	~15000	~8000

Note: we realized that also during the experiment the GEM- μ RWELL may still be used as a standard μ RWELL, with efficiency higher than 90%, should the GEM stage show problems and must be disconnected.

DUT set-up

- Each pair of identical DUT are positioned in a mirror configuration with facing cathodes, also called "**Enemy**" mode. This will allow to directly compare the relative measured hit position with minimum systematic uncertainties.
- DUT may be rotated to study their characteristics for inclined tracks.
 - θ= 0°, 7.5°, 15°, 30°, 45°

Data Acquisition and Analysis

- The used data acquisition system is the Scalable Readout System (SRS¹)+APV25² read by mmDAQ3³
 - Two FECs are used
 - 24 APV25 in total
- The data analysis is performed using the Corryvreckan⁴ framework

The Maelstrom for Your Test Beam Data

E. Sidoretti at WG7 https://indico.cern.ch/event/1442324/contributions/6262062/

¹S. Martoiu et al. JINST, 8:C03015, 2013.
²M. French et al. NIM A, 466(2):359–365, 2001
³M. e. a. Bianco. PoS, TIPP2014:202, 2015
⁴D. Dannheim *et al* 2021 *JINST* **16** P03008

Thanks to Givi for his fundamental help

Studied parameters

GEM- μ RWELL

	GEM-μRWELL	μRGroove
SCAN HV 0°	ΔV _{GEM} scan ΔV _{WELL} = 550 V, E _{drift} = 1 kV/cm, E _{transfer} = 4 kV/cm	ΔV _{WELL} scan E _{drift} = 1 kV/cm
SCAN HV 30°	ΔV _{GEM} scan ΔV _{WELL} = 550, V E _{drift} = 1 kV/cm, E _{transfer} = 4 kV/cm	ΔV _{WELL} scan E _{drift} = 1 kV/cm
SCAN gap field 30°	E_{drift} and $E_{transfer}$ scan ΔV_{WELL} = 550 V, ΔV_{GEM} = 440 V	E _{drift} scan ΔV _{WELL} = 670 - 720 V
SCAN θ	θ scan ΔV _{WELL} = 550 V, ΔV _{GEM} = 440 V, E _D = 1 kV/cm, E _T = 4 kV/cm	θ scan ΔV _{WELL} = 670 - 720 V, E _{drift} = 1 kV/cm

We studied the performance of the μ RWELL when the GEM is turned off at different angles to check if it is possible to still perform μ TPC calculations with 3 mm gas gap.

Efficiency is calculated as:

tracks with associated cluster on the DUT

tracks passing trought the DUT

with cluster association performed for a 1 cm x 1 cm window.

TB2024 DUT, Efficiency

11

Elena Sidoretti - 3rd DRD1 Collaboration Meeting

GEM-µRWELL

 The hybrids' WELL is set to have gain ~1500 (ΔV_{WELL}= 550 V), high efficiency are reached even for low GEM gain (~3.5), ΔV_{GEM} ~380 V (eff ~97%)

Preliminary results

HV scan at 0°

 $\mu \rm RGroove$ (2 groove connected, 400 $\mu \rm m$ total pitch)

- Efficiency plateau is reached for HV ~ 680 V (eff ~96%)
- The reason of the HV shift between them is under investigation

Preliminary results HV scan at 0°

TB2024 DUT, Efficiency

 $GEM-\mu RWELL$

- ΔV_{WELL} = 550 V corresponding to ~1500 gas gain in the WELL
- high efficiency are reached for ΔV_{GEM} ~380 V (eff 97%) corresponding to ~5200 gas gain in total

TB2024 DUT, Efficiency_vs_GainTOT

Preliminary results HV scan at 0°

 μ RGroove (2 groove connected, 400 μ m total pitch)

- Efficiency plateau is reached for HV ~ 680 V (eff ~96%)
- The reason of the HV shift between them is under investigation

TB2024 DUT, Efficiency_vs_GainTOT

TB2024 DUT, Efficiency

Analysis ongoing

Charge Centroid method is currently used as the first step of spatial resolution study.

On-going data analysis implementations:

- The "enemy" method
 - calculates the distance between the clusters' • centre on each readout as residual

Analysis ongoing

Charge Centroid method is currently used as the first step of spatial resolution study.

On-going data analysis implementations:

- The "enemy" method
 - calculates the distance between the clusters' centre on each readout as residual

Implementation to study inclined tracks:

- The "µTPC" method
 - time of the hit on the strip is used with the drift velocity in the gap, to perform μ TPC and select the position along z in the gas gap in which the particle passed

Effects under study

Efficiency 2D map:

GEM- μ RWELL in HV plateau (ΔV_{GEM} = 430 V) GRV_2 Global efficiency map HYB_1 Global efficiency map globalEfficiencyMap_trackPos_TProfile Entries 27164 y [mm] y [mm] Mean x 8.693 Mean y 6.388 0.9 Std Dev x 22.37 Std Dev y 0.8 20 20 0.6 0.5 -20 0.4 -20 0.3 -40 0.2 -40 PRELIMINARY PRELIMINARY 0.1 -60-40 -20 20 40 -40 -20 20 40 60 n x [mm] x [mm] Average efficiency ~71% Average efficiency ~97%

 μ RGroove (Δ V_{WELL} = 590 V)

20.3

-0.7 0.6

0.5

0.4

0.3

0.2

0.1

Effects under study

- after a few days of data taking, for one of the two μ RGroove the current on electrodes reached ~800 nA (HV filter on the TOP with resistivity of 2 M Ω)
- The detector is still operational with only a relatively small inefficient region in the efficiency map (an effect also reported by Kondo Gnanvo with μRWELL)
- Efficiency lowers from ~94 % to ~71 %

μ RGroove (Δ V_{WELL} = 590 V)

Average efficiency ~71%

Next steps

- Implementation and finalization of the spatial resolution analysis for angular tracks
- Stay tuned...

Spare

The μ -RWELL

Resistive MPGD composed of:

PCB cathode (gas detector gap)

 μ -RWELL_PCB anode (electron amplification + readout stages)

- a WELL patterned kapton foil (w/Cu-layer on top) acting as amplification stage
- a resisitive DLC layer w/ $\rho{\sim}50\div100~M\Omega/{\Box}$
- a standard readout PCB with pad/strip segmentation

The "WELL" acts as a **multiplication channel** for the ionization produced in the drift gas gap. The resistive stage ensures the **spark amplitude quenching,** allows to achieve large gains > 10⁴. Drawback: capability to stand high particle fluxes reduced, but largely recovered with appropriate grounding schemes of the resistive layer.

Pitch R/0→ 2 strips OR conneted = 400 um (0.4*256 ch)= 102.4 Pitch R/0→ 2 strips OR conneted = 340 um (0.34*256 ch)= 87.04 Pitch R/0→ 3 strips OR conneted = 420 um (0.42*244 ch)= 102.4 Pitch R/0→ 3 strips OR conneted = 360 um (0.36*256 ch)= 92.2

Test Beam 2023 @ CERN

CS pitch 1.2 mm

- The charge is **split** between X and $Y \rightarrow$ the **working point is shifted** to high voltage/gain
 - Common to every detector with the "COMPASS" readout
- Efficiency knee @ 600 V and plateau ~95%
- Spatial Resolution improves with gain \rightarrow <150 μm

Top R/O pitch 0.8 mm

- The charge is NOT split between X and Y \rightarrow the working point is similar to the 1D $\mu\text{-}$ RWELL
- Low efficiency due to the segmentation of the amplification stage (dead zone between the top strips)
- Efficiency knee @ 500 V and plateau ~70%

The ePIC detector acceptance

ePIC is the first large acceptance detector that will be located at the Interaction Point (IP6).

Elena Sidoretti - 3rd DRD1 Collaboration Meeting